

Seat No. : _____

TP-111 B.Sc. Sem.-III

May-2013

Core 201 Mathematics

(Advanced Calculus – I)

Time: 3 Hours]

[Max. Marks: 70

Instruction : All questions are compulsory and carry equal marks.

1. Attempt any **two**:

(a) Define the limit of function f(x, y) and find the limit using definition :

 $\lim_{(x, y) \to (2, 1)} \frac{2x + y}{3y - x}$

- (b) Define the directional derivative of a function of several variables and find the directional derivative of $f(x, y) = \frac{xy^2}{x^2 + y^4}$, if $(x, y) \neq (0, 0)$ & f(x, y) = 0, if (x, y) = (0, 0) at point (0, 0) along the direction of the vector (1, 1).
- (c) Define the iterated limit of functions of two variables and find that limit for functions :

(i)
$$f(x, y) = \frac{\sin(x + y)}{x + y}$$
 at point (0, 0)

(ii)
$$f(x, y) = \left(\frac{x^2 + y^2}{x - y}\right)$$
 at point (1, 1)

- 2. Attempt any **two**:
 - (a) State and prove Young's theorem. Is converse true ? Justify.
 - (b) State and prove Schwartz's theorem. Is converse true ? Justify.
 - (c) Discuss the differentiability and continuity of function

$$f(x, y) = \frac{xy^2}{x^3 + y^3}$$
, $(x, y) \neq (0, 0)$ & $f(x, y) = 2$, $(x, y) = (0, 0)$ at point $(0, 0)$.

TP-111

- 3. Attempt any **two** :
 - (a) State and prove Euler's theorem for a homogeneous function of two-variables with degree m.
 - (b) Find three positive integers whose sum is 15 and their product is maximum.

(c) If
$$z = \tan^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$$
 then prove that $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = \sin 4u - \sin 2u$

- 4. Attempt any **two**:
 - (a) Define : The radius of curvature of the curve. Derive the formula for the radius of curvature of the curve y = f(x).
 - (b) Find the radius of curvature of following curves at origin :
 - (1) $y^2 = 4ax$

(2)
$$x^2 + 2xy + 2y^2 - 4x = 0$$

- (c) Find the double points of the curve $x^3 + 3x^2 y^2 + 3x 2y = 0$ and discuss their nature.
- 5. Give the answer of following questions :
 - (1) Define continuity of function of two variables.
 - (2) Define differentiation of function of two variables.
 - (3) State the Maclaurin's theorem for expansion of function of two variables.
 - (4) Find the radius of curvature of following curves : $x^2 + y^2 = 9$
 - (5) Define the curvature of the curve.
 - (6) Define : Double points, Cusp and Node
 - (7) State the necessary and sufficient condition for extreme values of functions of two variables.