Seat No. : _____

JK-110

January-2021

B.Sc., Sem.-V

EC-305 : Mathematics (Discrete Mathematics)

Time : 2 Hours] [Max. Mar					
Inst	ructio	ns: (1 (2 (3 (4	 Attempt any three questions from Q-1 to Q-6. Q-7 is compulsory. Notations are usual, everywhere. Figures to the right indicate marks of the question/sub-question. 		
1.	(A)	State d	istributive Inequality and prove any one of them.	7	
	(B)	Explai	n Hass Diagram and also draw the Hass Diagram of (S_{2020}, D) .	7	
2.	(A)	Define	Lattice.	7	
		Let n ł	be a positive integer and S_n be the set of all positive factors of n. For every	r	
		a, b ∈	$S_n \cdot aDb$ means "a divides b".		
		Then s	how that $\langle S_n, D \rangle$ is a lattice.		
	(B)	For a I	Lattice (L, \leq) prove that $a \leq b \Leftrightarrow a * b = a \Leftrightarrow a \oplus b = b, \forall a, b \in L$.	7	
3.	(A)	State I	De'Morgan's law and prove any one of them.	7	
	(B)	Define	Direct product of two lattices and draw the Hass Diagram of $\langle S \times L, D \rangle$)	
		where	set S and L is divisors of 9 and 4 respectively.	7	
4.	(A)	Prove	that every chain is Distributive Lattice.	7	
	(B)	Show	that $(s_{30}, *, \oplus)$ and $(P(A), \cap, \cup)$ are isomorphic Lattice for $A = \{a, b, c\}$.	7	
JK-1	10		1 P.T	. .	

5.	(A)	Show that there is no Boolean algebra of order 3.	7
	(B)	Express $x_1 * x_2$ as Product of Sum(POS) canonical form in three variables.	7
6.	(A)	State and prove stone representation theorem.	7
	(B)	Define equivalent Boolean expression and also show that $(x \oplus y) * (x' \oplus z)$ and	
		$(x * z) \oplus (x' * y)$ are equivalent.	7
7.	Attempt any four of the following in short :		
	(a)	Define: Partially ordered set.	
	(b)	Give a relation on the set which is Transitive but neither reflexive nor symmetric.	
	(c)	Find complement of each element in the set of divisors of 12.	
	(d)	Define : Atom.	
	(e)	Define : Minterm.	
	(f)	Is the Boolean expression $\alpha(x, y, z) = (x * y * z) \oplus (x * y * z')$ symmetric ? Justify	
		your answer.	

Seat No. : _____

[Max. Marks : 50

JK-110 January-2021

B.Sc., Sem.-V EC-305 : Mathematics (Number Theory)

Time : 2 Hours]

- **Instructions :** (1) Attempt any **three** questions from Q-1 to Q-6.
 - (2) Q-7 is compulsory.
 - (3) Notations are usual, everywhere.
 - (4) Figures to the right indicate marks of the question/sub-question.

(A) Show that the linear Diophantine equation ax + by = c has solution if d | c, where d = gcd(a, b). Also if x₀ and y₀ are any solution of the equation then any other solution is given by x = x₀ + (b/d) t, y = y₀ - (a/d) t, where t ∈ Z.
 (B) Using Euclidean Algorithm, find the integers x, y, z satisfying

$$gcd(198, 288, 512) = 198x + 288y + 512z$$
7

$$172x + 20y = 1000$$
 and hence solve for positive integers. 7

3. (A) Show that every positive integer n > 1 can be expressed as a product of primes in unique way (does not matters of the orders of the prime factors).

(B) Prove :
$$p \ge q \ge 5$$
 & p, q primes $\Rightarrow 24 | p^2 - q^2$. 7

3

JK-110

P.T.O.

4.	(A)	Prove that there is an infinite number of primes of the form $4k + 3$.	
	(B)	Using Chinese Remainder Theorem, solve : $17x \equiv 9 \pmod{276}$.	7

5. (A) Show that the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$, p = prime > 2 has solution if and only if $p \equiv 1 \pmod{4}$.

- (B) Prove : $7 | 5^{2n} + 3 \cdot 2^{5n-2}, \forall n \ge 1.$ 7
- 6. (A) Prove : If p is a prime then $(p 1) ! \equiv -1 \pmod{p}$. Also by Wilson's theorem verify that 4(29!) + 5! is divisible by 31 or not. 7
 - (B) State the Euler's Theorem and prove that a¹⁷²⁹ = a(mod 1729), a ∈ Z.
 Is 1729 pseudo prime or absolute pseudo prime or both ?
 7

- 7. Attempt any **four** of the followings in short :
 - (a) What is the unit digit of 3^{3^3} ?
 - (b) Find a prime P such that the numbers $p^2 + 8$ and $p^3 + 4$ are also primes.
 - (c) State the Well Ordering Principle and the fundamental theorem of arithmetic.
 - (d) Find the remainder when 2019^{2021} is divided by 2020?
 - (e) Find the missing digits X, Y, Z if 396 divides the number 3X6Y9Z.
 - (f) Obtain a set of any five numbers which is complete set of residues modulo 5.

Seat No. : _____

[Max. Marks : 50

JK-110

January-2021 B.Sc., Sem.-V

EC-305 : Mathematics (Financial Mathematics)

Time : 2 Hours]

Instructions : (1) Attempt any **three** questions from Q-1 to Q-6.

- (2) Q-7 is compulsory.
- (3) Notations are usual, everywhere.
- (4) Figures to the right indicate marks of the question/Sub-question.

(A) What is the Present value of ₹ 21,00,000 received after ten years, for opportunity cost (interest rate) is 5% per year compounded annually, semi-annually, quarterly, monthly, weekly, daily and continuously ?

(B) Write a short note on Interest rates.

2. (A) What is the Future value of ₹ 2,01,000 invested for 7 years, for opportunity cost (interest rate) is 7% per year compounded quarterly, weekly, daily, continuously? Also find effective rate of interest in each case.
7

(B) Define bonds, shares, & index, also define arbitrage.

3. (A) Define Bond, also define bond redemption at par, at premium and at discount. 7

(B) Consider a monthly coupon bond with annual coupon rate 12%, with the face value ₹ 1000 for 3 years tenure, consider the annual rate of interest in effect is 24%. Find the NPV for this bond.

JK-110

P.T.O.

7

- 4. (A) Show that for a bond of n years with annual coupon payment C and face value F, if its yield (yield to maturity) is λ then its price is given by $P = \frac{1}{(1+\lambda)^n} \left[\frac{(1+\lambda)^n - 1}{\lambda}C + F\right]$.
 - (B) Consider a portfolio with two bonds A and B, immunize this bonds portfolio using Macaulay duration, if the amount to be invested in portfolio P = 1,00,000 and for the duration of 3 years. Here Bond A is zero coupon bond of 2 years and Bond B is of 5 years annual coupon bond with annual coupon payment 300 and the face value of 1000 with the desired yield to maturity 7% continuously compounded. Then determine the amount of Money to be invested in each bond.
- (A) Write the Markowitz portfolio optimization problem with short selling and derive constrained optimization method using langrage's multiplier.
 - (B) Calculate the portfolios mean return and variance using the following details : $R = (0.39, 1.16, -0.59)^{T}, W = (0.3, 0.2, 0.5)$ and

$$CV = \begin{bmatrix} 1.02 & 1.14 & 0.29 \\ 1.14 & 2.20 & 0.60 \\ 0.29 & 0.60 & 1.32 \end{bmatrix} \text{ find } \overline{r} \& \sigma^2 \text{ for portfolio.}$$

- 6. (A) Write a short note on portfolio diagram and choice of asset.
 - (B) Consider a portfolio of three assets A, B & C with the following properties :

$$\overline{\mathbf{r}}_{\mathrm{A}} = 0.4, \ \overline{\mathbf{r}}_{\mathrm{B}} = 0.3, \ \overline{\mathbf{r}}_{\mathrm{C}} = 0.7,$$

 $\sigma_{\mathrm{A}} = \sigma_{\mathrm{B}} = \sigma_{\mathrm{C}} = 1 \& \sigma_{\mathrm{AB}} = \sigma_{\mathrm{BC}} = \sigma_{\mathrm{AC}} = 0$

For fixed $\overline{r} = 0.7$ find the minimum variance portfolio.

JK-110

7

7

- 7. Attempt any **four** of the followings in short :
 - (a) Define an Asset.
 - (b) Define return and rate of return.
 - (c) Define Net present Value of given cash flow.
 - (d) Define Perpetuity.
 - (e) Define Efficient Frontier.
 - (f) Write the statement of one fund theorem.