Seat No. :

SK-127

September-2020

B.Sc., Sem.-VI

CC-309 : Mathematics (Analysis-III)

Time : 2 Hours]

[Max. Marks : 50

- **Instructions :** (i) Attempt any **THREE** questions in Section-I.
 - (ii) Section-II is a compulsory section of short questions.
 - (iii) Notations are usual everywhere.
 - (iv) The right hand side figures indicate marks of the sub question.

SECTION – I

Attempt any THREE of the following questions :

(A) Let X be a metric space. Prove that an open sphere is an open set. (B) Let X be a metric space with metric d. Show that d₁ defined by d₁ (x, y) = d(x, y)/(1+d(x, y)) is also a metric on X. (A) Let X be a metric space. A subset F of X is closed if and only if its complement F' is open. (B) Let X be a non-empty set, and let d be a real function of ordered pairs of elements of X which satisfies the following two conditions.

$$d(x, y) = 0 \Leftrightarrow x = y$$
, and $d(x, y) \le d(x, z) + d(y, z)$. Show that d is a metric on X

3. (A) Prove that Compact subsets of metric spaces are closed.
(B) A subset E of the real line R¹ is connected if and only if it has the following Property : If x ∈ E, y ∈ E and x < z < y, then z ∈ E.
7

1

SK-127

P.T.O.

- 4. (A) Closed subsets of compact sets are compact.
 - (B) A mapping f of a metric space X into a metric space Y is continuous on X if and only if f⁻¹ (V) is open in X for every open set V in Y.
 7

7

7

7

7

- 5. (A) State and prove Weierstrass M-test. Show that $f_n(x) = n^2 x^n (i x)$; $x \in [0, 1]$ converges pointwise to a function which is continuous on [0, 1].
 - (B) Let (f_n) be a sequence of functions in R [a, b] converging uniformly to f.

Then
$$f \in R[a, b]$$
 and $\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx.$ 7

- 6. (A) Let (f_n) be a sequence of continuous function on $E \subset C$ converges uniformly to f on E, then prove that f is continuous on E.
 - (B) Let f_n satisfy
 - (1) $f_n \in D[a, b].$
 - (2) $(f_n(x_0))$ converges for $x_0 \in D[a, b]$.
 - (3) f'_n converges uniformly on [a, b], then prove that f_n converges uniformly on
 [a, b] to a function f.
 7
- 7. (A) State and prove Abel's limit theorem.
 - (B) Show that for $-1 \le x \le 1$, $\log(1 + x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$ Hence evaluate log2. 7

8. (A) For every
$$x \in R$$
 and $n > 0$, prove that

$$\sum_{k=0}^{n} (nx-k)^2 {n \choose k} x^k (1-x)^{n-k} = nx (1-x) \le n/4$$
(B) State and prove Weierstrass Approximation theorem. 7

SK-127

SECTION – II

8

- 9. Attempt any **FOUR** of the followings in short :
 - (1) Prove that X and ϕ are an open set.
 - (2) Define : Metric Space.
 - (3) If F is closed and K is compact, then prove that $F \cap K$ is compact.
 - (4) Define : Connected set.
 - (5) Define Uniform convergence.
 - (6) Prove by Taylor's series $\tan^{-1} x = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \dots$