Seat No. :

SJ-121

September-2020

B.Sc., Sem.-VI

CC-308 : Statistics Sampling Techniques (New Course)

Time : 2 Hours]

[Max. Marks : 50

7

Section – I

Attempt any three :

- (A) Write detailed note on simple random sample and explain different methods to draw a sample by using SRS technique.
 7
 - (B) Derive variance for SRSWOR.
- (A) What is simple random sampling ? Give merits and demerits of simple random sampling.

(B) For SRSWOR, show that $S^2 = \frac{1}{N-1} \sum_{i=l}^{n} (y_i - \overline{y})^2$ is an unbiased estimate of $S^2 = \frac{1}{N-1} \sum_{i=l}^{N} (y_i - \overline{y})^2$. 7

3. (A) Derive the variance of stratified sampling using Neyman allocation. 7

(B) Show that for stratified random sampling the variance of estimate \overline{y}_{st} is

1

$$V(\bar{y}_{st}) = \sum_{h=1}^{L} w_h^2 \frac{S_h^2}{n_h} (1 - f_h).$$
7

SJ-121

P.T.O.

- 4. (A) Write detailed note on estimating size of the sample by using stratified sampling. 7
 - (B) If the cost function is of the form $C = C_o + \sum_{h=1}^{L} t_h \sqrt{n_h}$; where C_o and t_h are known numbers, show that in order to minimize $V(\overline{y}_{st})$ for fixed cost, the n_h must be proportional to $\left(\frac{w_h S_h^2}{2}\right)^{2/3}$. Also find n_h for fixed n_h .

proportional to
$$\left(\frac{u_h v_h}{t_h}\right)$$
. Also find n_h for fixed n. 7

5. (A) Derive variance of systematic sampling in terms of
$$S_w^2$$
 and S_w . 7

- (B) A systematic sample has same precision as a corresponding stratified random sample with 1 unit per stratum if $S_{wst} = 0$. 7
- 6. (A) What is systematic sampling ? Explain its merits and demerits. Give its application also.7
 - (B) If the population consists of linear trend, give the relationship between variance of stratified sampling, simple random sampling and systematic sampling.7
- 7. (A) Write a note on two stage sampling.7
 - (B) In two-stage sampling $V(\hat{\theta}) = V_1[E_2(\hat{\theta})] + G[V_2(\hat{\theta})].$ 7
- 8. (A) In n units and m sub-units from each chosen units are selected by SRS then

$$V(\bar{y}) = \frac{N-n}{N} \frac{S_1^2}{n} + \frac{M-m}{M} \frac{S_2^2}{mn}.$$
7

- (B) Explain : Sub sampling is regarded as incomplete sampling. 7
- SJ-121

- 9. Attempt the following : (Any Four)
 - (1) The number of possible samples of size n out of N population units without replacement is

(a)
$$\binom{N}{n}$$
 (b) $(N)_n$

(c)
$$n^2$$
 (d) $n!$

- (2) An unordered sample of size n can occur in.
 - (a) n ways (b) n! ways
 - (c) one way (d) n^2 ways
- (3) If we have a sample of size n from a population of N units, the finite population correction is
 - (a) $\frac{N-1}{N}$ (b) $\frac{n-1}{N}$

(c)
$$\frac{N-n}{N}$$
 (d) $\frac{N-n}{n}$

(4) If n units are selected in a sample from N population units, the sampling fraction is given by

(a)
$$\frac{N}{n}$$
 (b) $\frac{1}{N}$

(c)
$$\frac{1}{n}$$
 (d) $\frac{n}{N}$

- (5) Which of the following advantage of systematic sampling you approve ?
 - (a) easy selection of sample
 - (b) economical
 - (c) spread of sample over the whole population
 - (d) All of the above

- (6) Selected units of a systematic sample are
 - (a) not easily locatable
 - (b) easily locatable
 - (c) not representing the whole population
 - (d) All of the above
- (7) In what situation two stage sampling is better than single stage sampling ?
 - (a) When the elements in the same stage are positively correlated.
 - (b) When the elements in the same stage are negatively correlated.
 - (c) When the elements in the same stage are uncorrelated.
 - (d) None of the above.
- (8) Probability of drawing a unit at each selection remains same in
 - (a) SRSWOR (b) SRSWR
 - (c) Both (a) and (b) (d) None of (a) & (b)

Seat No. : _____

SJ-121

September-2020

B.Sc., Sem.-VI

CC-308 : Statistics Statistical Inference and Design of Experiment – II (Old Course)

Time : 2 Hours]

[Max. Marks : 50

Section – I

Attempt any **three** :

1. (A (B	testing of hypothesis. Suggest the ways of minimizing them.	7 7
2. (A) State and prove Neyman-Pearson Lemma.	7
(B) Describe likelihood ratio test in detail. State its properties.	7
3. (A) Explain fully randomized block design. State its merits and demerits.	7
(B) What is factorial experiment ? Explain 2^3 factorial experiment in detail.	7
4. (A (B	randomized design ?	7 7
5. (A (B	and $\theta = \theta_1 < \theta_0$ in case of a normal population N(θ , σ^2) where σ^2 is known. Hence find the power of the test.	7
	$H_1: \mu_4 \neq \mu_2.$	7

6.	(A)	Explain the difference between parametric and non parametric tests in detail.	7
	(B)	Write a note on Mann-Whitney test.	7
7.	(A)	Write a note on Wilcoxon signed rank test.	7
	(B)	Write a note on median test.	7
8.	(A)	Let $x_1, x_2, -, x_n$ be a random sample from N(θ ,1). Obtain B.C.R to test H ₀ : $\theta = \theta_0$ v/s H ₁ : $\theta = \theta_1$.	7
	(B)	Let $x_1, x_2,, x_n$ be independent observation obtained from N(μ, σ^2) where $\sigma =$	
		10. Find B.C.R of size $\alpha = 0.05$ from testing H_0 : $\mu = 100$ v/s H_1 : $\mu = 110$.	
		Obtain power of the test.	7

Section – II

9. Answer the **four** :

(1) The formula for obtaining a missing values in randomized block design by minimizing the error mean square was given by

8

- (a) W.G. Cochran (b) T. Wishart
- (c) F. Yates (d) J.W. Turkey

(2) Full form of LRT is

- (a) Likelihood ratio test (b) Log ratio test
- (c) Likelihood revenue test (d) Loglikelihood ratio test
- (3) Most of the non-parametric methods utilize measurements on
 - (a) Interval scale (b) Ratio scale
 - (c) Ordinal scale (d) Nominal scale
- (4) A test procedure δ for testing a hypothesis about a parameter θ whose risk is not more than the risk of any test procedure δ¹ for all θ and is definitely less for some θ is called
 - (a) minimal test (b) admissible test
 - (c) most powerful test (d) optimum test

- (5) The idea of testing of hypothesis was first set forth by
 - (a) R.A. Fisher (b) J. Neyman
 - (c) E.L. Lehman (d) A. Wald

(6) Whether a test is one sided or two-sided depends on

- alternate hypothesis (b) composite hypothesis
- (c) null hypothesis (d) simple hypothesis

(7) If θ is a true parameter and β the type-II error, the function $\beta(\theta)$ is known as

- (a) Power of the test (b) Power function
- (c) Operating characteristic function (d) None of the above.

(8) Area of the critical region depends on

(a)

- (a) Size of type-I-error (b) Size of type-II-error
- (c) Value of the statistics (d) Number of observations