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Instructions : (1) All Questions in Section I carry equal marks. 
   (2) Attempt any THREE questions in Section I. 
   (3) Question IX in Section II is COMPULSORY.    

Section – I 
 

 Attempt any Three questions : 
 1. (A) Let f be integrable on [a, b] and a < c < b, then prove that f is integrable on [a, c] 

and [c, b] and   
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 (B) Let f(x)=2x2/3 on [0, 1] for n  
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 2. (A) State and prove Second Mean Value Theorem of Integral Calculus. 7 
 (B) Prove that  
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3. (A) Prove that the series   ...!
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 (B) Prove that if p > 1, the series 2 )(log
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n pnn  converges and if p < 1, the series 
diverges.  7 

 4. (A) State and prove Cauchy’s condemsation test. 7 
 (B) Test for convergence : 
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5. (A) State and Prove Merten’s Theorem. 7 
 (B) Find the set of convergence (interval of convergence) and radius of convergence 

for the power series  
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6. (A) If  na is absolutely convergent, then prove that any rearrangement of  na has 

the same sum. 7 
 (B) For the following, determine whether the series converges absolutely, converges 

conditionally, or diverges : 
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7. (A) Obtain Maclaurin series expansion of sin x for  x . 7 
 (B) Write Taylor’s formula with Cauchy form of remainder for f (x) = (1–x)1/2 about    

a = 0 and –1 < x < 1. 7 
 
8. (A) Let f be a real valued function on [a, a + h] and fn+1(x) is continuous on [a, a + h]. 
  Then Prove that,  
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 (B) Let (1–x)y' + 1 = 0 with initial conditions y(0)=1. Find a power series solution for 
this equation in power of x. 7  

 
Section – II 

 
9. Attempt any Four short questions : 8 
 (1) Give an example of a sequence which is bounded and divergent series. 
 (2) If f(x) = 3cosx –2ex, find the primitive F of f. 
 (3) Find limit superior and limit inferior of the sequence Sn= {1,1/2,1/3,1/4,..}. 
 (4) Write Maclaurin series expansion of log(1+x) for –1 < x <1. 
 (5) Test for convergence :  0
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 (6) Find the radius of convergence for the series 
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