Seat No. : \qquad

SJ-128

September-2020
B.Sc., Sem.-VI

CC-308 : Mathematics

(Analysis-II)
Time : 2 Hours]
[Max. Marks : 50
Instructions : (1) All Questions in Section I carry equal marks.
(2) Attempt any THREE questions in Section I.
(3) Question IX in Section II is COMPULSORY.

Section - I

Attempt any Three questions :

1. (A) Let f be integrable on [a, b] and $a<c<b$, then prove that f is integrable on [a, c] and [c, b] and $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.
(B) Let $f(x)=2 x^{2} / 3$ on $[0,1]$ for $\mathrm{n} \in \mathrm{NP}_{\mathrm{n}}=\left\{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \frac{4}{n} \ldots \frac{n-1}{n}, 1\right\}$, then find $\lim _{n \rightarrow \infty} U\left[f ; P_{n}\right]$ and $\lim _{n \rightarrow \infty} L\left[f ; P_{n}\right]$.
2. (A) State and prove Second Mean Value Theorem of Integral Calculus.
(B) Prove that $\frac{1}{3 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x}} d x \leq \frac{1}{3}$
3. (A) Prove that the series $\sum \frac{1}{n!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+\ldots$ converges to the value e , which is an irrational number?
(B) Prove that if $\mathrm{p}>1$, the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ converges and if $\mathrm{p} \leq 1$, the series diverges.
4. (A) State and prove Cauchy's condemsation test.
(B) Test for convergence :
(1) $\sum_{n=1}^{\infty} \frac{n^{5 / 2}}{n^{2}+3 n+5}$
(2) $\sum_{n=1}^{\infty}\left(1+\frac{3}{n}\right)^{-n^{2}}$
5. (A) State and Prove Merten's Theorem.
(B) Find the set of convergence (interval of convergence) and radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{n(x-1)^{n}}{(n+1) 5^{n}}$.
6. (A) If $\sum a_{n}$ is absolutely convergent, then prove that any rearrangement of $\sum a_{n}$ has the same sum.
(B) For the following, determine whether the series converges absolutely, converges conditionally, or diverges :
(1) $\quad \sum \frac{(-1)^{n} n}{\left(n^{2}+1\right)}$
(2) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n}{n^{3 / 2}}$
7. (A) Obtain Maclaurin series expansion of $\sin x$ for $-\infty<x<\infty$.
(B) Write Taylor's formula with Cauchy form of remainder for $f(x)=(1-x)^{1 / 2}$ about $\mathrm{a}=0$ and $-1<x<1$.
8. (A) Let f be a real valued function on $[\mathrm{a}, \mathrm{a}+\mathrm{h}]$ and $\mathrm{f}^{\mathrm{n}+1}(x)$ is continuous on $[\mathrm{a}, \mathrm{a}+\mathrm{h}]$. Then Prove that,
$f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+. .+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n+1}(x)$ for $x \in[a, a+h]$
Where $R_{n+1}(x)=\frac{1}{n!} \int_{a}^{x}(x-t)^{n} f^{(n+1)}(t) d t$.
(B) Let $(1-x) y^{\prime}+1=0$ with initial conditions $y(0)=1$. Find a power series solution for this equation in power of x.

Section - II

9. Attempt any Four short questions :
(1) Give an example of a sequence which is bounded and divergent series.
(2) If $f(x)=3 \cos x-2 e^{x}$, find the primitive F of f.
(3) Find limit superior and limit inferior of the sequence $\mathrm{S}_{\mathrm{n}}=\{1,1 / 2,1 / 3,1 / 4, .$.$\} .$
(4) Write Maclaurin series expansion of $\log (1+x)$ for $-1<x<1$.
(5) Test for convergence : $\int_{0}^{\infty} \frac{d x}{1+x^{2}} d x$.
(6) Find the radius of convergence for the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$.
