Seat No. :

SJ-128

September-2020

B.Sc., Sem.-VI

CC-308 : Mathematics (Analysis-II)

Time : 2 Hours]

- **Instructions :** (1) All Questions in **Section I** carry equal marks.
 - (2) Attempt any THREE questions in Section I.
 - (3) Question IX in Section II is COMPULSORY.

Section – I

Attempt any Three questions :

1. (A) Let f be integrable on [a, b] and
$$a < c < b$$
, then prove that f is integrable on [a, c]
and [c, b] and $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$.
(B) Let $f(x)=2x^{2}/3$ on [0, 1] for $n \in NP_{n} = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{4}{3}, \dots, \frac{n-1}{3}, 1\right\}$, then find

$$\lim_{n \to \infty} U[f; P_n] and \lim_{n \to \infty} L[f; P_n].$$
7

2. (A) State and prove Second Mean Value Theorem of Integral Calculus. 7
(B) Prove that
$$\frac{1}{x^2} = \frac{1}{x^2} + \frac{1}{x^2}$$

(B) Prove that
$$\frac{1}{3\sqrt{2}} \le \int_{0}^{\infty} \frac{x}{\sqrt{1+x}} dx \le \frac{1}{3}$$
 7

3. (A) Prove that the series
$$\sum \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$
 converges to the value e, which is an irrational number ?

(B) Prove that if p > 1, the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges and if $p \le 1$, the series diverges.

4. (A) State and prove Cauchy's condemsation test.
(B) Test for convergence :

(1)
$$\sum_{n=1}^{\infty} \frac{n^{5/2}}{n^2 + 3n + 5}$$
 (2) $\sum_{n=1}^{\infty} \left(1 + \frac{3}{n}\right)^{-n^2}$ 7

SJ-128

[Max. Marks : 50

7

- 5. (A) State and Prove Merten's Theorem.
 - (B) Find the set of convergence (interval of convergence) and radius of convergence for the power series $\sum_{n=1}^{\infty} \frac{n(x-1)^n}{(n+1)5^n}.$ 7
- 6. (A) If $\sum a_n$ is absolutely convergent, then prove that any rearrangement of $\sum a_n$ has the same sum.
 - (B) For the following, determine whether the series converges absolutely, converges conditionally, or diverges :

(1)
$$\sum \frac{(-1)^n n}{(n^2 + 1)}$$
 (2) $\sum_{n=1}^{\infty} (-1)^n \frac{\sin n}{n^{3/2}}$ 7

- 7. (A) Obtain Maclaurin series expansion of sin x for $-\infty < x < \infty$.
 - (B) Write Taylor's formula with Cauchy form of remainder for $f(x) = (1-x)^{1/2}$ about a = 0 and -1 < x < 1.
- 8. (A) Let f be a real valued function on [a, a + h] and $f^{n+1}(x)$ is continuous on [a, a + h]. Then Prove that,

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_{n+1}(x) \text{ for}$$

$$x \in [a, a+h]$$
Where $R_{n+1}(x) = \frac{1}{n!} \int_{a}^{x} (x-t)^n f^{(n+1)}(t) dt.$
7

(B) Let (1-x)y' + 1 = 0 with initial conditions y(0)=1. Find a power series solution for this equation in power of *x*.

Section - II

- 9. Attempt any **Four** short questions :
 - (1) Give an example of a sequence which is bounded and divergent series.
 - (2) If $f(x) = 3\cos x 2e^x$, find the primitive F of f.
 - (3) Find limit superior and limit inferior of the sequence $S_n = \{1, 1/2, 1/3, 1/4, ...\}$.
 - (4) Write Maclaurin series expansion of log(1+x) for -1 < x < 1.

(5) Test for convergence :
$$\int_{0}^{\infty} \frac{dx}{1+x^2} dx$$

(6) Find the radius of convergence for the series
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}.$$

SJ-128

8

7

7

7

7