\qquad

SI-133

September-2020
 B.Sc., Sem.-VI
 CC-307 : Physics
 (Mathematical Physics, Classical Mechanics \& Quantum Mechanics)

Time : 2 Hours]
[Max. Marks : 50

સૂચના : સકેતોનાં અર્થ સામાન્ય છે.

PART - I

કોઈપણ ત્રણ પ્રશ્નોના જવાબ લખો :

1. (i) સાબિત કરો કे, $\mathrm{J}_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cdot \sin x$
(ii) સાબિત કરો કे, $\mathrm{J}_{\mathrm{m}}(x)=\int_{0}^{\pi} \cos (\mathrm{m} \theta-x \sin \theta) \mathrm{d} \theta$
2. (i) સાબિત કરો કે,
(1) $\mathrm{J}_{\mathrm{n}-1}(x)+\mathrm{J}_{\mathrm{n}+1}(x)=\frac{2 \mathrm{n}}{x} \cdot \mathrm{~J}_{\mathrm{n}}(x)$
(2) $\mathrm{J}_{\mathrm{n}-1}(x)-\mathrm{J}_{\mathrm{n}+1}(x)=2 \mathrm{~J}_{\mathrm{n}}^{\prime}(x)$
(ii) સાબિત કરો કे :

$$
\begin{equation*}
L_{\mathrm{n}-1}^{\alpha}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left[L_{\mathrm{n}-1}^{\alpha}(x)-L_{\mathrm{n}}^{\alpha}(x)\right] \tag{7}
\end{equation*}
$$

3. (i) લાગ્રાન્જેનાં સમીક૨ણનો ઉપયોગ કરી ન્યુટનની ગતિનું સમીક૨ણા તા૨વો.
(ii) ન્યુટનની ગતિનાં સમીક૨ણથી હેમીલ્ટનનો સિદ્વાંત તારવો.
4. (i) શ્રેણુી અને સમાંત૨ પરિપથ માટે લાગ્રાન્જે મેળવો.
(ii) વિન્યાસ અવકાશ, વેગમાન અવકાશ અને પ્રવસ્થા અવકાશ સમજાવો. એક પરિમાણી સ૨ળ આવર્ત દોલક માટે દર્શાવો કે પ્રવસ્થા માર્ગ (Phase path)નો ઢાળ $\frac{-m \omega^{2} x}{P}$ છે.
5. (i) સ્થિતિમાન કૂપ વ્યાખ્યાયિત કરો, ત્રિપરિમાણીય કૂપનાં અંદ૨નાં ભાગમાં ત્રિજીયાવર્તી શ્રોડિન્જ૨ સમીક૨ણનો ઉેકેલ મેળવો.
(ii) ત્રિ-પરિમાણીીક સમ- દિક્ધર્મી દોલક માટે સાબિત કરો કે, $E_{n}=(n+3 / 2) ~ ђ \omega$
6. (i) ત્રિ-પરિમાણીક કૂપનાં બહારનાં ભાગમાં non-localized states $(\mathrm{E}>\mathrm{O})$ ની ચર્ચા કરો.
(ii) ત્રિજીયાવર્તી શ્રોડિંજ૨ સમીકરણની મદદથી H -atom માટે ઉર્જા આયગન મૂલ્ય મેળવો.
7. (i) સેલ્ફ-એડજોઈન્ટ કારકનું આયગન મૂલ્ય વાસ્તવિક હોય છે તેમ સાબિત કરો તથા આયગન અવસ્થાઓ $\mid \mathrm{a}>$ અને $\mid \mathrm{a}^{\prime}>$ માટે સાબિત કરો કે, < $\mathrm{a}^{\prime} \mid \mathrm{a}>=0 ; \mathrm{a} \neq \mathrm{a}^{\prime}$
(ii) સાબિત કરો કે: $\langle x| \hat{P}|x\rangle=-i$ ђ $\frac{d \psi}{d x}$
8. (i) પ્રક્ષેપ કા૨ક (projection operator) $\widehat{P a}$ વ્યાખ્યાયિત કરો. જો \hat{A} ઓબ્ઝરવેબલ હોય તો, સાબિત

$$
\begin{equation*}
\text { કरो કे, } \hat{\mathrm{A}}=\sum_{\mathrm{a}} \mathrm{a} \text { Pa. } \tag{7}
\end{equation*}
$$

(ii) સાબિત કરો કે, $\psi^{\prime}(x)=\mathrm{e}$ i $\frac{\mathrm{P}_{x}}{\hbar} \cdot \psi(x)$

PART - II

9. કોઈપણ આઠ પ્રશ્નોના જવાબ આપો :
(1) હર્માઈટનું વિકલ-સમીક૨ણ લખો.
(2) લેગુરીનું વિકલ-સમીકરણ લખો.
(3) બેસલ-વિધેય માટે જનરેટિંગ વિધેય $\mathrm{g}(x, \mathrm{t})$ લખો.
(4) ગેમા વિધેય \bar{Z} વ્યાખ્યાયિત કરે.
(5) $\Delta \mathrm{d}$ ફે૨ફા ($\Delta \mathrm{d}$ variation) અને δ-ફે૨ફા (δ-variation) વચ્ચ્ચેનો તફાવત આપો.
(6) એક પરિમાણીીય સ૨ળ આવર્ત દોલકનાં પ્રવસ્થા માર્ગની (phase-space) આકૃતિ દોરો.
(7) ભૂમાપન (geodesic) એટલે શું ?
(8) સરળ દોલક માટે લાગ્રાન્જીયન લખો.
(9) H-પ૨માણુની ઉર્જા સ્તરોની આકૃતિ તેનાં સ્થિતિમાનનાં સંદર્ભે દોરો.
(10) ત્રિ પરિમાણીક સમ-દિક્ધર્મી દોલક માટે zero-point ઉર્જા આપો.
(11) સમ-દિક્ધર્મી દોલકની વ્યાખ્યા આપો.
(12) H-પ્રકારનાં પ૨માણુ માટે પે૨ાબોલીક યામમાં તરંગ સમીક૨ણ લખો.
(13) $\left(\mathrm{A}^{+}\right)^{+}$शું થાય ?
(14) $[\hat{x}, \hat{P}]$ નું મૂલ્ય લખો.
(15) $\left[\Sigma_{x}, \Sigma_{y}\right]$ નું મૂલ્ય લખો.
(16) કારક Âની રેખીયતા વ્યાખ્યાયિત કરો.
\qquad

SI-133

September-2020
B.Sc., Sem.-VI

CC-307 : Physics

(Mathematical Physics, Classical Mechanics \& Quantum Mechanics)

Time : 2 Hours]
[Max. Marks : 50

Instruction : Symbol have their usual meaning.

PART - I

Answer any three questions :

1. (i) Prove that $\mathrm{J}_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cdot \sin \mathrm{x}$
(ii) Prove that $\mathrm{J}_{\mathrm{m}}(x)=\int_{0}^{\pi} \cos (\mathrm{m} \theta-x \sin \theta) \mathrm{d} \theta$
2. (i) Prove that
(1) $\mathrm{J}_{\mathrm{n}-1}(x)+\mathrm{J}_{\mathrm{n}+1}(x)=\frac{2 \mathrm{n}}{x} . \mathrm{J}_{\mathrm{n}}(x)$
(2) $\mathrm{J}_{\mathrm{n}-1}(x)-\mathrm{J}_{\mathrm{n}+1}(x)=2 \mathrm{~J}_{\mathrm{n}}^{\prime}(x)$
(ii) Prove that: $L_{n-1}^{\alpha}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left[L_{\mathrm{n}-1}^{\alpha}(x)-L_{\mathrm{n}}^{\alpha}(x)\right]$
3. (i) Derive Newton's equation of motion using Lagrange's equation.
(ii) Derive Hamilton's principal from Newton's equation of motion.
4. (i) Obtain Lagrangian for series and parallel circuits.
(ii) Explain configuration space, momentum space and phase space. Show that the slope of the phase path for one dimensional harmonic oscillator is $\frac{-\mathrm{m} \omega^{2} x}{\mathrm{P}}$.
5. (i) Define square well potential. Obtain the solution of radial Schrodinger equation in interior region.
(ii) Prove for three dimensional isotropic harmonic oscillator, $\mathrm{E}_{\mathrm{n}}=(\mathrm{n}+3 / 2) \ddagger \omega$
6. (i) Discuss non-localized states $(\mathrm{E}>\mathrm{O})$ in the outer region of the three dimensional square well potential.
(ii) Using radial Schrodinger equation, obtain energy eigen value for H -atom.
7. (i) Prove that eigen value of the self adjoint operator is always real and for eigen states $\mid \mathrm{a}>$ and $\mid \mathrm{a}^{\prime}>$ prove that, $\left\langle\mathrm{a}^{\prime} \mid \mathrm{a}\right\rangle=0 ; \mathrm{a} \neq \mathrm{a}^{\prime}$
(ii) Prove that: $\langle x| \hat{P}|x\rangle=-i \hbar \frac{d \psi}{d x}$
8. (i) Define projector operator $\widehat{\mathrm{Pa}}$

If $\hat{\mathrm{A}}$ is observable, prove $\hat{\mathrm{A}}=\sum_{\mathrm{a}} \mathrm{a} \hat{\mathrm{Pa}}$.
(ii) Prove that $\psi^{\prime}(x)=\mathrm{e}$ i $3 \frac{\mathrm{P}_{x}}{\hbar} \cdot \psi(x)$

PART - II

9. Answer any eight questions :
10. Write Hermite differential equation.
11. Write Laguerre differential equation.
12. Write generating function $\mathrm{g}(x, \mathrm{t})$ for Bessel function.
13. Define Gemma function $\sqrt[Z]{ }$.
14. Write the difference between Δ variation and δ variation.
15. Draw phase space diagram for one dimensional harmonic oscillator.
16. Define geodesic.
17. Write Lagrangian for simple pendulum.
18. Draw energy level diagram for H -atom in relation to potential.
19. Give zero-point energy for three dimensional harmonic oscillator.
20. Define isotropic harmonic oscillator.
21. Write wave equation for the H -like atom in terms of parabolic co-ordinates.
22. What is $\left(\mathrm{A}^{+}\right)^{+}$
23. Write value of $[\hat{x}, \hat{P}]$
24. Write value of $\left[\Sigma_{x}, \Sigma_{y}\right]$
25. Define linearity of an operator \hat{A}.
