\qquad

SI-132

September-2020
B.Sc., Sem.-VI

CC-307: Mathematics
(Abstract Algebra-II)
Time : 2 Hours]
[Max. Marks : 50

Instructions : (i) Attempt any three questions in Section-I.
(ii) Section-II is a compulsory section of short questions.
(iii) Notations are usual everywhere.
(iv) The right hand side figures indicate marks of the sub-question.

SECTION - I

Attempt any THREE of the following questions :

1. (a) Define a ring. Also prove the following properties in a ring R :
(1) $\mathrm{a} \cdot 0=0 \cdot \mathrm{a}=0, \forall \mathrm{a} \in \mathrm{R}$, where 0 is the zero element of R .
(2) $\mathrm{a} \cdot(-\mathrm{b})=(-\mathrm{a}) \cdot \mathrm{b}=-(\mathrm{a} \cdot \mathrm{b}), \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$.
(b) Show that the set $Z(\sqrt{2})=\{a+b \sqrt{2} / a, b \in Z\}$ forms a ring under usual addition and multiplication of real numbers.
2. (a) Prove that every field is an integral domain.

Also give an example of an integral domain which is not a field.
(b) Define a Boolean ring and prove that a Boolean ring is a commutative ring.

Also give an example of a Boolean ring.
3. (a) Define an ideal of a ring R. Also prove that a nonempty subset I of a ring R is an ideal of R if and only if (i) $a-b \in I$, for all $a, b \in I$ and (ii) $a \cdot r$ and $r \cdot a \in I$, for all $a \in I$ and for all $r \in R$.
(b) Show that $(\mathrm{Z},+, \bullet)$, the ring of integers is a principal ideal ring.
4. (a) Prove that a field has no proper ideal.
(b) Define a ring Homomorphism. If $\Phi:(\mathrm{R},+, \bullet) \rightarrow\left(\mathrm{R}^{\prime}, \oplus, \odot\right)$ is a ring homomorphism and I is an ideal of R then prove that $\Phi(\mathrm{I})$ is an ideal of $\Phi\left(\mathrm{R}^{\prime}\right)$.
5. (a) For nonzero polynomials $\mathrm{f}, \mathrm{g} \in \mathrm{D}[\mathrm{x}]$ prove that $[\mathrm{fg}]=[\mathrm{f}]+[\mathrm{g}]$.
(b) Using Division algorithm for $\mathrm{f}(x)$ and $\mathrm{g}(x) \in \mathrm{Z}_{5}[x]$ express $\mathrm{f}(x)$ into the form $\mathrm{q}(x) \mathrm{g}(x)+\mathrm{r}(x)$ for $\mathrm{f}(x)=x^{4}+3 x^{2}+2 x+4$ and $\mathrm{g}(x)=x+1 \in \mathrm{Z}_{5}[x]$.
6. (a) Suppose $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \in Z[x]$ and suppose $\frac{p}{q}$ in the simplest form (i. e. $(p, q)=1$) is a solution of the equation $f(x)=0$. Then prove that $p \mid a_{0}$ and $q \mid a_{n}$.
(b) Show that the polynomial $x^{3}+3 x^{2}-8$ is irreducible over Q .
7. (a) If \oplus and \odot are binary operations defined on the set R of all real numbers as $a \oplus b=a+b-1 ; a \odot b=a+b-a b$, then show that (R, \oplus, \odot) is a field.
(b) If F_{1} and F_{2} are subfields of a field F , then prove that $\mathrm{F}_{1} \cap \mathrm{~F}_{2}$ also is a subfield of F.
8. (a) If M is a maximal ideal of a commutative ring R with unity then prove that the quotient ring R / M is a field.
(b) If $\mathrm{I}=<4>$ then show that I is a maximal but not a prime ideal of the ring 2 Z of all even integers.

SECTION - II

9. Attempt any FOUR of the following in short :
(i) Give an example of a division ring which is not a field.
(ii) Give an example of a subring which is not an ideal.
(iii) Give an example of a subring of a ring which is not an ideal of the ring.
(iv) Give an example of a division ring which is not a field.
(v) State the remainder theorem and the factor theorem for polynomials.
(vi) Define a prime ideal and give an example of a prime ideal.
