\qquad

Instructions:

1. All the questions in Section-I carry equal marks.
2. Attempt any Three questions from Section-I
3. Questions in Section-II are COMPULSORY

Section-I

1. (A) Prove that, for $n \geq 3, S_{n}$ is a non-Abelian group.
(B) Define group. Give with details an example of a group of order 45 .
2. (A) Give with details an example of an infinite non-Abelian group.
(B) State (without proof) the Fundamental theorem of finite Abelian groups. How many Abelian groups of order 100 are there? Justify.
3. (A) What is the order of the permutation $\alpha=(12)(2345)$ in the group A_{10} ?
(B) Define simple groups. Determine the values of n for which the group \mathbb{Z}_{n} is simple.
4. (A) Define an automorphism. Prove that $A u t\left(\mathbb{Z}_{n}\right)$ is isomorphic to $U(n)$.
(B) Define a normal subgroup. Give an example of group G and its subgroup H such that If that is not nomal ini G.
5. (A) Prove or disprove: The group $(\mathbb{R},+)$ is isomorphic to the group $(\mathbb{Q},+)$.
(B) Let $|G|=100$ and H be a subgroup of G. write down all the possible orders of H ?
PTO
6. (A) Define homomorphism. If $\phi: G \rightarrow G^{\prime}$ is a homomorphism then prove that $\phi(e)=e^{\prime}$.
(B) Define simple groups. If $|G|=p$ (where, p is a prime), show that G is simple.
7. (A) What is the order of the group $U(15)$?Explain.
(B) Define the conjugacy class $\mathrm{cl}(\mathrm{a})$ of the element $a \in G$.

When does $\operatorname{cl}(a)=\{a\}$ hold for all $a \in G$? Explain.
8. (A) How many homomorphism are there from the group \mathbb{Z}_{12} to the group \mathbb{Z}_{21} ? [7]
(B) How many elements of order 2 are there in the group $\mathbb{Z}_{100} \oplus \mathbb{Z}_{200}$?

Section -II

1. Any infinite cyclic group G is isomorphic to the group
(A) $(\mathbb{R},+)$
(C) $(\mathbb{Q},+)$
(B) $(\mathbb{Z},+)$
(D) $\left(\mathbb{Z}_{n},+_{n}\right)$
2. Let a and b be any two elements of group G. Then $|a b|=|b a|$ if and only if G is \qquad
(A) Abelian
(C) finite
(B) cyclic
(D) none of these
3. What is the order of the group $G=\mathbb{Z}_{5} \oplus U(7)$?
(A) 30
(C) 35
(B) 32
(D) 34

$$
E 136-3
$$

4. How many elements of the group A_{5} have order 3?
(A) 1
(C) 15
(B) 20
(D) 24
5. What is the order of the center $Z\left(S_{3}\right)$ of the group S_{3} ?
(A) 6
(C) 1
(B) 4
(D) 2
6. Which of the following groups is simple?
(A) S_{3}
(C) $\left(\mathbb{Z}_{4},+{ }_{4}\right)$
(B) $(\mathbb{Z},+)$
(D) $\left(\mathbb{Z}_{7},+{ }_{7}\right)$
7. For which values of m and n, the group $G=\mathbb{Z}_{n} \oplus \mathbb{Z}_{n}$ is cyclic?
(A) $m=10, n=15$
(C) $m=4, n=28$
(B) $m=12, n=21$
(D) $m=10, n=33$
8. What is the order of the group $\operatorname{Aut}\left(\mathbb{Z}_{10}\right)$?
(A) 10
(C) 4
(B) 1
(D) 2
