\qquad

AJ-103

August-2021

B.Sc., Sem.-V

301 : Mathematics

(Linear Algebra - II)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Attempt any three questions from questions $\mathbf{1}$ to 8.
(2) Question 9 is compulsory question.
(3) Notations are usual everywhere.
(4) The figure to the right indicate marks of the question/sub-question.

1. (A) If W is a subspace of a finite dimensional vector space V . Then prove that $\operatorname{dim} \mathrm{W}+\operatorname{dim} \mathrm{W}^{0}=\operatorname{dim} \mathrm{V}$, where W^{0} is annihilator of W.
(B) Which of the following functions defined for vectors $u=\left(x_{1}, x_{2}\right)$ and $v=\left(y_{1}, y_{2}\right)$ in R^{2} is a bilinear form?
(1) $f(u, v)=x_{1} y_{2}-x_{2} y_{1}$
(2) $g(u, v)=\left(x_{1}-y_{1}\right)^{2}+x_{2} y_{2}$
2. (A) State and prove the dual basis existence theorem.
(B) Find the dual basis of the basis $\mathrm{B}=\{(1,-1,3),(0,1,-1),(0,3,-2)\}$ of the vector space V_{3}.
3. (A) State and prove the Cauchy-Schwartz's inequality.
(B) If $<,>$ a function defined by $\langle x, \mathrm{y}\rangle=x_{1} \mathrm{y}_{1}-x_{2} \mathrm{y}_{1}-x_{1} \mathrm{y}_{2}+4 x_{2} \mathrm{y}_{2}$ for $x=\left(x_{1}, x_{2}\right)$ and $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ in R^{2} then, determine whether $<,>$ is an inner product on R^{2} or not.7
4. (A) Prove that any orthogonal set of non-zero vectors in an inner product space V is linearly independent.
(B) Apply Gram-Schmidt orthogonalization process to the basis $B=\{(1,1,0),(1,0,0),(1,1,1)\}$ in order to get the orthonormal basis for R^{3}.
5. (A) State and prove that Laplace Expansion.
(B) Compute the $\operatorname{det} \mathrm{A}$ if $\mathrm{A}=\left[\begin{array}{cccc}1 & 5 & 0 & 0 \\ 2 & 0 & 8 & 0 \\ 3 & 6 & 9 & 0 \\ 4 & 7 & 10 & 1\end{array}\right]$.
6. (A) Suppose det: $\mathrm{V}_{\mathrm{n}} \longrightarrow \mathrm{R}$ is a function satisfying properties of the determinant. Then prove that
(i) $\operatorname{det}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . . \mathrm{v}_{\mathrm{i}}, \ldots . . \mathrm{v}_{\mathrm{j}}, \ldots . . \mathrm{v}_{\mathrm{n}}\right)=\operatorname{det}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . . \mathrm{v}_{\mathrm{i}}+\alpha \mathrm{v}_{\mathrm{j}}, \ldots . . \mathrm{v}_{\mathrm{j}}, \ldots . . \mathrm{v}_{\mathrm{n}}\right)$ whenever $\mathrm{i} \neq \mathrm{j}$.
(ii) $\operatorname{det}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . . \mathrm{v}_{\mathrm{i}}, \ldots . . \mathrm{v}_{\mathrm{j}}, \ldots . . \mathrm{v}_{\mathrm{n}}\right)=0$ if $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . . \mathrm{v}_{\mathrm{j}}, \ldots . . \mathrm{v}_{\mathrm{i}}, \ldots . . \mathrm{v}_{\mathrm{n}}\right\}$ is linearly dependent.
(B) Using Cramer's Rule (if applicable), solve the system of equations :
$x+2 y+3 z=3,2 x-z=4,4 x+2 y+2 z=5$
7. (A) State and prove the Cayley-Hamilton's theorem.
(B) Diagonalize the quadratic equation $7 x^{2}+7 y^{2}-2 z^{2}+20 y z-20 z x-2 x y=36$.
8. (A) If $\mathrm{T}: \mathrm{V} \longrightarrow \mathrm{V}$ is a symmetric linear map and if v_{i} are given vectors of T corresponding to eigen values $\lambda_{\mathrm{i}}, \mathrm{i}=1,2$ with $\lambda_{1} \neq \lambda_{2}$ then prove that v_{1} and v_{2} are orthogonal vectors.
(B) Apply the Cayley-Hamilton's theorem to find A^{-1} if $\mathrm{A}=\left(\begin{array}{ccc}3 & 1 & -1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right)$.
9. Answer any four of the following in short :
(a) Let $\mathrm{T}: \mathrm{V}_{3} \longrightarrow \mathrm{~V}_{2}$ and $\mathrm{S}: \mathrm{V}_{2} \longrightarrow \mathrm{~V}_{2}$ be two linear maps define by $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}, x_{1}\right)$ and $\mathrm{S}\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$, then determine ST .
(b) Let $\mathrm{u}=(1,2,3)$ and $\mathrm{v}=(-2,3,0)$, then find the vector projection of u on v .
(c) If $x=y$ and x and y are column vector of vector space V_{2}, then find the value of $\operatorname{det}(x, y)$.
(d) Find the real number \propto such that the vectors $u=(2, \propto, 1)$ and $v=(4,-2,-2)$ are orthogonal.
(e) Find the matrix A if $\mathrm{A}^{-1}=\left(\begin{array}{cc}1 & 3 \\ -2 & 6\end{array}\right)$.
(f) Find detA without expansion of the determinant if $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 3\end{array}\right]$.
