Seat No.:	
-----------	--

7

JI-122

Janmuary-2021

B.Sc., Sem.-V

CC-303 :Mathematics (Complex Variables and Fourier Series)

Time: 2 Hours] [Max. Marks: 50

Instructions: (1) Attempt any **Three** questions from Q. 1 to Q. 8.

- (2) Q. No. 9 is Compulsory.
- (3) Notations are usual everywhere.
- (4) Figures to the right indicate marks of the question/sub question.
- 1. (a) State and prove Triangle in equality in C. Hence deduce that

$$||Z_1| - |Z_2|| \le |Z_1 - Z_2|, \ z_1, z_2 \in C.$$

- (b) In the system C of complex numbers show that
 - $(i) \qquad \overline{z}_1 + \overline{z}_2 = \overline{z_1 + z_2}$
 - (ii) $\overline{z}_1 \cdot \overline{z}_2 = \overline{z_1 \cdot z_2}$

(iii)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2}, z_2 \neq 0$$

(iv)
$$|z_1 z_2| = |z_1| |z_2|$$

- (a) Define convergence of sequence and series in C. Suppose that z_n = x_n + iy_n; n = 1,
 2, 3..... then prove that (z_n) converges to z = x + iy if and only if (x_n) converges to
 x and (y_n) converges to y, where z_n = x_n + iy_n, n = 1, 2, 3... and z = x + iy.
 - (b) Show that $\cos^2 z \sin^2 z = \cos 2z$; $z = x + iy \in C$. Find all the values of $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3/4}$.

- 3. (a) Define: Harmonic function. If a function f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then prove that component functions u(x, y) and v(x, y) are harmonic. Verify this result for the function $f(z) = z^2$.
 - (b) Show that the function $f(z) = \frac{x^3 y^3 + i(x^3 + y^3)}{x^2 + y^2}$; $(x, y) \neq (0, 0)$

and
$$f(z) = 0$$
 ; $(x, y) = (0, 0)$

7

7

7

7

7

is not analytic at z = 0 even if Cauchy-Riemann equations are satisfied at z = 0.

- 4. (a) If the function $f(z) = u(r, \theta) + iv(r, \theta)$ is analytic in the domain D then derive the equations $u_r = \frac{1}{r} v_\theta$ and $v_r = -\frac{1}{r} u_\theta$. Also, show that $v(r, \theta)$ satisfies the equation $r^2 v_{rr} + r v_r + v_{\theta\theta} = 0$.
 - (b) If u(x, y) and v(x, y) are harmonic in D then prove that the function

$$\left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}} - \frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right) + \mathbf{i} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{y}}\right) \text{ is analytic.}$$

- 5. (a) Define conformal mapping and prove that an analytic function f(z) preserves conformality.
 - (b) Find the image of the curve |z i| < 2 under the mapping $w = \frac{iz + 1}{z + 2i}$.
- 6. (a) Prove that the set of Bilinear Transformations form a non commutative group under the binary operation composition of two transformations, where, associativity is assumed.
 - (b) Obtain the image of the curve y = x 1 and y = 0 under the mapping $w = \frac{1}{z}$, $z \neq 0$.

 Also, check the conformality of this mapping at the point z = -1.
- 7. (a) If the series $\frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ converges uniformly to f on $[-\pi, \pi]$, then prove that it is the Fourier series for f on $[-\pi, \pi]$.
 - (b) Find a sine series for the function f(x) = x, for $0 < x < \frac{\pi}{2}$ and f(x) = 0 for $\frac{\pi}{2} < x < \pi$.

JI-122 2

- If f(x) is Riemann integrable in $(-\pi, \pi)$, then the series $\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ converges, 8. (a) where a_n and b_n are the Fourier coefficients of f(x).
 - Find the Fourier series expansion of the function $f(x) = x^2$, in $0 < x < 2\pi$. 7 (b)

7

9. Attempt any **four** of the followings in short :

8

Take z = x + iy a complex number to answer the short questions]

- State the $Re(\log z)$ and $Im(\log z)$.
- Is the curve $u = x^3 3xy^2$ Harmonic? Justify.
- Which curve is represented by the expression |3z 2| = |z i|? (c)
- Find the singular points of a mapping $f(z) = \frac{3z+1}{(z-i)(z^2-8z+15)}$. (d)
- Is the function zⁿ Entire? Explain. (e)
- (f) Obtain $\int \cos nx \sin mx \, dx$ for all m, n = 0, 1, 2,

JI-122 3

JI-122 4