\qquad

JI-122
 Janmuary-2021
 B.Sc., Sem.-V
 CC-303 :Mathematics
 (Complex Variables and Fourier Series)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Attempt any Three questions from Q. 1 to Q. 8.
(2) Q. No. 9 is Compulsory.
(3) Notations are usual everywhere.
(4) Figures to the right indicate marks of the question/sub question.

1. (a) State and prove Triangle in equality in C. Hence deduce that

$$
\begin{equation*}
\left|\left|\mathrm{Z}_{1}\right|-\left|\mathrm{Z}_{2}\right|\right| \leq\left|\mathrm{Z}_{1}-\mathrm{Z}_{2}\right|, \mathrm{z}_{1}, \mathrm{z}_{2} \in \mathrm{C} \tag{7}
\end{equation*}
$$

(b) In the system C of complex numbers show that
(i) $\overline{\mathrm{z}}_{1}+\overline{\mathrm{z}}_{2}=\overline{\mathrm{z}_{1}+\mathrm{z}_{2}}$
(ii) $\overline{\mathrm{z}}_{1} \cdot \overline{\mathrm{z}}_{2}=\overline{\mathrm{z}_{1} \cdot \mathrm{Z}_{2}}$
(iii) $\overline{\left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)}=\frac{\overline{\mathrm{z}}_{1}}{\overline{\mathrm{z}}_{2}}, \mathrm{z}_{2} \neq 0$
(iv) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
2. (a) Define convergence of sequence and series in C. Suppose that $\mathrm{z}_{\mathrm{n}}=x_{\mathrm{n}}+\mathrm{iy} ; \mathrm{n}=1$, $2,3 \ldots \ldots$ then prove that $\left(\mathrm{z}_{\mathrm{n}}\right)$ converges to $\mathrm{z}=x+$ iy if and only if $\left(x_{\mathrm{n}}\right)$ converges to x and $\left(\mathrm{y}_{\mathrm{n}}\right)$ converges to y , where $\mathrm{z}_{\mathrm{n}}=x_{\mathrm{n}}+\mathrm{iy}_{\mathrm{n}}, \mathrm{n}=1,2,3 \ldots$ and $\mathrm{z}=x+\mathrm{iy}$.
(b) Show that $\cos ^{2} z-\sin ^{2} z=\cos 2 z ; z=x+$ iy $\in C$. Find all the values of $\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{3 / 4}$.
3. (a) Define : Harmonic function. If a function $\mathrm{f}(\mathrm{z})=\mathrm{u}(x, \mathrm{y})+\mathrm{iv}(x, \mathrm{y})$ is analytic in a domain D , then prove that component functions $\mathrm{u}(x, y)$ and $\mathrm{v}(x, y)$ are harmonic. Verify this result for the function $f(z)=z^{2}$.
(b) Show that the function $\mathrm{f}(\mathrm{z})=\frac{x^{3}-\mathrm{y}^{3}+\mathrm{i}\left(x^{3}+\mathrm{y}^{3}\right)}{x^{2}+\mathrm{y}^{2}} \quad ;(x, y) \neq(0,0)$

$$
\text { and } \mathrm{f}(\mathrm{z})=0 \quad ;(x, \mathrm{y})=(0,0)
$$

is not analytic at $\mathrm{z}=0$ even if Cauchy-Riemann equations are satisfied at $\mathrm{z}=0$.
4. (a) If the function $f(z)=u(r, \theta)+i v(r, \theta)$ is analytic in the domain D then derive the equations $u_{r}=\frac{1}{r} v_{\theta}$ and $v_{r}=-\frac{1}{r} u_{\theta}$. Also, show that $v(r, \theta)$ satisfies the equation $\mathrm{r}^{2} \mathrm{v}_{\mathrm{rr}}+\mathrm{rv}_{\mathrm{r}}+\mathrm{v}_{\theta \theta}=0$.
(b) If $\mathrm{u}(x, y)$ and $\mathrm{v}(x, \mathrm{y})$ are harmonic in D then prove that the function $\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)+i\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)$ is analytic.
5. (a) Define conformal mapping and prove that an analytic function $f(z)$ preserves conformality.
(b) Find the image of the curve $|z-i|<2$ under the mapping $w=\frac{i z+1}{z+2 i}$.
6. (a) Prove that the set of Bilinear Transformations form a non commutative group under the binary operation composition of two transformations, where, associativity is assumed.
(b) Obtain the image of the curve $\mathrm{y}=x-1$ and $\mathrm{y}=0$ under the mapping $\mathrm{w}=\frac{1}{\mathrm{z}}, \mathrm{z} \neq 0$. Also, check the conformality of this mapping at the point $\mathrm{z}=-1$.
7. (a) If the series $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ converges uniformly to f on $[-\pi, \pi]$, then prove that it is the Fourier series for f on $[-\pi, \pi]$.
(b) Find a sine series for the function $\mathrm{f}(x)=x$, for $0<x<\frac{\pi}{2}$ and $\mathrm{f}(x)=0$ for $\frac{\pi}{2}<x<\pi$.
8. (a) If $\mathrm{f}(x)$ is Riemann integrable in $(-\pi, \pi)$, then the series $\sum_{\mathrm{n}=1}^{\infty}\left(\mathrm{a}_{\mathrm{n}}^{2}+\mathrm{b}_{\mathrm{n}}^{2}\right)$ converges, where a_{n} and b_{n} are the Fourier coefficients of $\mathrm{f}(x)$.
(b) Find the Fourier series expansion of the function $\mathrm{f}(x)=x^{2}$, in $0<x<2 \pi$.
9. Attempt any four of the followings in short :

Take $\mathrm{z}=x+$ iy a complex number to answer the short questions]
(a) State the $\operatorname{Re}(\log z)$ and $\operatorname{Im}(\log z)$.
(b) Is the curve $u=x^{3}-3 x y^{2}$ Harmonic? Justify.
(c) Which curve is represented by the expression $|3 \mathrm{z}-2|=|\mathrm{z}-\mathrm{i}|$?
(d) Find the singular points of a mapping $f(z)=\frac{3 z+1}{(z-i)\left(z^{2}-8 z+15\right)}$.
(e) Is the function z^{n} Entire? Explain.
(f) Obtain $\int_{-\pi}^{\pi} \cos n x \sin m x d x$ for all $m, n=0,1,2, \ldots$

