1008E118

Candidate's	Seat 1	No:
-------------	--------	-----

Wi.Sc. Sem-3 Examination

501

Mathematics August 2021

Max. Marks: 50

Time: 2-00 Hours

Functional Analysis I

Instructions:

- 1. All the questions in **Section-I** carry equal marks.
- 2. Attempt any Three questions in Section-I.
- 3. Questions in Section-II are COMPULSORY.

Section-I

- 1. (A) Let M and N be subspaces of vector space V, such that V = M + N. Show that $V = M \oplus N$ if and only if $M \cap N = \{0\}$.
 - (B) Let N be a normed linear space. Prove the following:

7

- (i) For $x, y \in N$, $||x|| ||y|| \le ||x y||$.
- (ii) Norm is a continuous function.
- 2. (A) Is the set $A = \{(x_1, x_2, x_3)/x_1 \text{ is an integer}\}$ a subspace of the real linear space \mathbb{R}^3 ? Justify your answer.
 - (B) State and prove the closed graph theorem.

7

- 3. (A) Show that the vectors (1,0,0),(0,1,0),(1,1,1) form a basis for \mathbb{R}^3 . Show that if $\{e_1,e_2,e_3\}$ is a basis for \mathbb{R}^3 , then $\{e_1+e_2,e_1+e_3,e_2+e_3\}$ is also a basis.
 - (B) State Parallelogram law. Is the parallelogram law true in $l_1^n (n > 1)$? Explain. 7
- 4. (A) Show that the set \mathbb{R}^n of *n*-tuples $x=(x_1,\ldots,x_n)$ of real numbers is a Banach space under the norm

$$||x|| = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}.$$

- (B) If $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$, prove that $(l_p^n)^* = l_q^n$.
- 5. (A) Let N be a non-zero normed linear space. If N is a Banach space, prove that $\{x: ||x|| = 1\}$ is complete.
 - (B) For any non-empty subset S of a Hilbert space H, prove that S^{\pm} is always a closed subspace of H.

E118-2

- 6. (a) If M is a closed linear subspace of a normed linear space N and x_0 is a vector not in M, prove that there exists a functional f_0 in N^* such that $f_0(M) = 0$ and $f_0(x_0) \neq 0$.
 - (b) State and prove Schwartz inequality.
- 7. (A) Let L be a non-zero finite-dimensional linear space of dimension n. Show that every set of n+1 vectors in L is linearly dependent.
 - (B) Give an example of a normed linear space which is not a Banach space. Justify your answer.
- 8. (A) Sketch the following sets:
 - (i) $S = \{x = (x_1, x_2) \in \mathbb{R}^2 : ||x||_2 = 1\}.$
 - (ii) $S = \{x = (x_1, x_2) \in \mathbb{R}^2 : ||x||_{\infty} = 1\}.$
 - (B) State the following theorems.(Do not prove)
 - (i) Open mapping theorem.
 - (ii) Uniform boundedness theorem.

Section-II

8

7

7

7

- (1) If M is a one-dimensional subspace of the real space \mathbb{R}^3 , then
 - (A) M is a line through the origin.
 - (B) M is a plane through the origin.
 - (C) $M = \{0\}.$
 - (D) M is the entire space \mathbb{R}^3 .

(2)	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be that linear transformation such that $T(1,1) = (1,-2)$ and $T(1,0) = (-4,1)$, then $T(5,-3)$ equals								
	(A) $(-35, 14)$	(B) $(-35,6)$	(C)	(14, -35)	(D) (35, 3)			
(3)	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be then $T^{-1}(x,y,z)$ equals	a linear mapping defin als	ned by	$T(x,y,z) = (x - x)^{-1}$	- 3 <i>y</i> -	-2z,y-4z,z),			
	(A) $(x+3y+14z, y)$	+4z, z).	(C)	(x+3y-14z,y-	-4z, y	y-z)			
	(B) $(x+3y+14z, y)$	-4z,z)	(D)	(x+4z,3x-4y-	-z, x	-y+z)			
(4)) The inequality $\sum_{i=1}^{n} x_i y_i \le x _p y _q$ is called								
	(A) Cauchy's inequa		(C)) Minkowski's inequality.					
(B) Hölder's inequality.			(D)	None of these.					
(5)	(5) Which of the following spaces is not reflexive?								
	(A) l_p	(B) l_p^n	(C)	c_0	(D)	None of these			
(6)	Which of the following subspaces of normed linear space l_{∞} is not closed?								
	(A) c	(B) c_0		c_{00}		None of these			
(7)	For $x \in X$, the norm	n in the inner product	space	X is					
	(A) $ x = \langle x, x \rangle$								
	(B) $ x = \sqrt{\langle x, x \rangle}$								
	(C) $ x = \langle x, x \rangle^2$								
	(D) none of the abo			2. 10		the dimension of			
(8) If N is a finite-dime conjugate space of A	ensional normed linear V is	· spac	e of dimension n ,	tnen	the dimension of			
	(A) equal to n								
	(B) less than n								
	(C) grater that n								
	(D) infinite								