Seat No. :

[Max. Marks : 50

JH-112

January-2021

B.Sc., Sem.-V CC-302 : Mathematics (Analysis – I)

Time : 2 Hours]

Instructions : (1)Attempt any three questions from questions 1 to 8. Question 9 is compulsory question. (2)Notations are usual everywhere. (3) (4) The figure to the right indicate marks of the question/sub-question. 7 1. (A) Prove that the set Q of all rational number is denumerable. Let S be any non-empty, bounded subset of R and a be any real number then (B) 7 show that Sup(a + S) = a + SupS. (A) Prove that there does not exist a rational number r such that $r^2 = 11$. 2. 7 If A is any set, then prove that there is no surjection of A onto the set P(A) of all (B) subsets of A. 7 (A) Prove that the sequence $\left(\left(1+\frac{1}{n}\right)^n\right)$ converges. 3. 7 7 **(B)** State and prove Bolzano-Weierstrass Theorem. (A) State and prove Sandwich theorem, using this prove that for $p \ge 2 \lim_{n \to \infty} \frac{1}{n^p} = 0$. 7 4. (B) If $s_1 = \sqrt{2}$ and $S_{n+1} = \sqrt{2s_n}$ for $n \ge 1$, prove that (s_n) is a monotonic increasing 7 sequence bounded above and $\lim s_n = 2$. 5. Suppose that the function f is continuous on the interval [a, b]. $f(a) \neq f(b)$, and k is (A) any number between f(a) and f(b). Then prove that there exists at least one point 7 $c \in (a, b)$ such that f(c) = k. Suppose g is continuous at c and f is continuous at g(c). Then prove that fog is **(B)**

JH-112

continuous at c.

P.T.O.

7

6.	(A) (B)	Prove that any polynomial of odd degree have at least one real root. Suppose that the function f is continuous on the interval [a, b] then prove that f is	7
	(B)	uniformly continuous on [a, b].	7
7.	(A)	State and prove L'Hospital's First Rule.	7
	(B)	State and prove Mean Value Theorem and verify it for $f(x) = x + x - 1 $ on [0,3].	7
8.	(A)	State and prove Darboux's Theorem.	7
	(B)	Evaluate :	
		(1) $\lim_{x \to 0^+} \frac{\tan x - x}{x^3}, x \in (0, \pi)$	
		(2) $\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x$	7
9.	Ansv	wer any four of the followings in short :	8
	(A)	Find the lub A and glb A of the set A= $\left\{ \cos \frac{n\pi}{3} / n \in N \right\}$.	
	(B)	Find the cluster points of the sequence $\{x_n\} = \{n^3\}$	
	(C)	Find the $\lim_{x \to 7} [x/2]$ if exists.	

(D) Find the derivative of $f(x) = |x^2 - 1|$.

(E) Give an example of sequence which is bounded and oscillatory.

(F) Give example of function which is nowhere continuous.