\qquad

JH-112

January-2021
B.Sc., Sem.-V

CC-302 : Mathematics
(Analysis - I)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Attempt any three questions from questions 1 to 8.
(2) Question 9 is compulsory question.
(3) Notations are usual everywhere.
(4) The figure to the right indicate marks of the question/sub-question.

1. (A) Prove that the set Q of all rational number is denumerable.
(B) Let S be any non-empty, bounded subset of R and a be any real number then show that $\operatorname{Sup}(a+S)=a+\operatorname{SupS}$.
2. (A) Prove that there does not exist a rational number r such that $r^{2}=11$.
(B) If A is any set, then prove that there is no surjection of A onto the set $\mathrm{P}(\mathrm{A})$ of all subsets of A .
3. (A) Prove that the sequence $\left(\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}\right)$ converges.
(B) State and prove Bolzano-Weierstrass Theorem.
4. (A) State and prove Sandwich theorem, using this prove that for $\mathrm{p} \geq 2 \lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}^{\mathrm{p}}}=0$. 7
(B) If $\mathrm{s}_{1}=\sqrt{2}$ and $\mathrm{S}_{\mathrm{n}+1}=\sqrt{2 \mathrm{~s}_{\mathrm{n}}}$ for $\mathrm{n} \geq 1$, prove that $\left(\mathrm{s}_{\mathrm{n}}\right)$ is a monotonic increasing sequence bounded above and $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{s}_{\mathrm{n}}=2$.
5. (A) Suppose that the function f is continuous on the interval $[\mathrm{a}, \mathrm{b}] . \mathrm{f}(\mathrm{a}) \neq \mathrm{f}(\mathrm{b})$, and k is any number between $f(a)$ and $f(b)$. Then prove that there exists at least one point $c \in(a, b)$ such that $f(c)=k$.
(B) Suppose g is continuous at c and f is continuous at $\mathrm{g}(\mathrm{c})$. Then prove that fog is continuous at c .
6. (A) Prove that any polynomial of odd degree have at least one real root.
(B) Suppose that the function f is continuous on the interval $[\mathrm{a}, \mathrm{b}]$ then prove that f is uniformly continuous on $[\mathrm{a}, \mathrm{b}]$.
7. (A) State and prove L'Hospital's First Rule.
(B) State and prove Mean Value Theorem and verify it for $\mathrm{f}(x)=x+|x-1|$ on $[0,3]$.
8. (A) State and prove Darboux's Theorem.
(B) Evaluate :
(1) $\lim _{x \rightarrow 0^{+}} \frac{\tan x-x}{x^{3}}, x \in(0, \pi)$
(2) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$
9. Answer any four of the followings in short :
(A) Find the lub A and $g l b A$ of the set $A=\left\{\cos \frac{n \pi}{3} / n \in N\right\}$.
(B) Find the cluster points of the sequence $\left\{x_{n}\right\}=\left\{n^{3}\right\}$
(C) Find the $\lim _{x \rightarrow 7}[x / 2]$ if exists.
(D) Find the derivative of $\mathrm{f}(x)=\left|x^{2}-1\right|$.
(E) Give an example of sequence which is bounded and oscillatory.
(F) Give example of function which is nowhere continuous.
