Seat No. :

AF-124

August-2021

B.Sc., Sem.-VI

311 : (Mathematics)

(Convex Analysis and Probability Theory)

Time : 2 Hours]

[Max. Marks : 50

Instructions	:	(i)	Attempt any THREE questions in Section-I .
--------------	---	-----	--

- (ii) Section-II is a compulsory section of short questions.
- (iii) Notations are usual everywhere.
- (iv) The right hand side figures indicate marks of the sub question.

SECTION-I

Attempt any **THREE** of the following questions :

- (a) Define Convex and concave functions on an interval I.
 Also show that the function f: R → R defined as f(x) = f(x) = |x| is decreasing on (-∞, 0], increasing on [0, ∞) and convex on (-∞, ∞).
 - (b) Show that the function f: R → R defined as f(x) = x² is monotonically increasing on [0, ∞) and decreasing on (-∞, 0].

2. (a) State and prove the Intermediate Value Theorem.

- (b) Let I be an interval containing more than one point and f: I → R be differentiable then prove that f' is nonnegative throughout I ⇔ f is monotonically increasing on I.
- 3. (a) Define terms : Sample space, impossible and Certain Events, mutually exclusive and exhaustive events, difference events. Also, state the probability of certain events and complementary events.
 - (b) A balanced die is tossed twice. Write the elements of the following :
 - (i) Sample space.
 - (ii) A = Event that sum of the integers on two dice is 7 or 10.
 - (iii) B = Event that integers on dice are odd.
 - (iv) C = Event that sum of integers on two dice is divisible by 3.
 - (v) D = Event that sum of integers on two dice is greater than 6.

Check whether events A and D are mutually exclusive or not. Also, find probabilities of events A, B, C and D. 7

AF-124

P.T.O.

7

7

4.	(a)	Define Classical definition of probability. State additive rule of probability for two and three events. If two events A, B and C are mutually exclusive events, then state the values of P[AUB] and P[AUBUC]. Given two events A and B such that $P[A] = 0.32$, $P[B] = 0.50$ and $P[AUB] = 0.75$, then find $P[A \cap B]$.	7
	(b)	Two balanced dice were tossed once. Write sample space and find the probability	
		of the following events :	
		(i) 3 or more on a first die and 6 on a second die	
		(ii) 1 on first die and a multiple of 2 on second die.	
		(iii) Sum of numbers on two dice is 9	
		(iv) Sum of numbers on two dice is divisible by 7.	7
5.	(a)	Stating conditions for deriving binomial distribution, state its probability function of binomial distribution. If the mean and variance of binomial distribution are 18	-
	(1)	and 1/3, then, find parameters of binomial distribution.	7
	(b)	If a random variable X follows Poisson distribution with parameter $m = 2$, state values of mean (E(X)), variance (V(X)), E(X+4), E(2X-3), V(4X). Also, find P(X=1), P(X<2).	7
6.	(a)	If a random variable X follows binomial distribution with parameters (n, p) then, state the conditions to get Poisson distribution from binomial distribution. State the mean and variance of Poisson distribution. If, a random variable X follows Poisson distribution with parameter θ , then, find θ such that P[X=2] = P[X=3]. Also, if θ =2, find P[X=0], P[X=1]	
		$\{e^{-1} = 0.368, e^{-2} = 0.135, e^{-3} = 0.050\}$	7
	(b)	State the probability function of a normal distribution.	
		Also, state the relationship between mean, median and mode of a normal distribution. Do you agree that the normal distribution is symmetric one?	7

SECTION-II

8

7. Answer ANY FOUR of the followings in Short :
(i) Give examples each one of convex and non-convex sets of R².

(ii) If A = { $(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 5$ } then find the convex hull of A.

- (iii) Define affine and convex sets.
- (iv) State Bayes' theorem on probability. Also, state its uses.
- (v) Give one application, each of binomial and Poisson distributions.
- (vi) State moment generating function of binomial distribution.

Seat No. : _____

AF-124

August-2021 B.Sc., Sem.-VI 311 : Mathematics (Operations Research)

Time : 2 Hours]

[Max. Marks : 50

7

7

P.T.O.

- **Instructions** : (i) Attempt any **THREE** questions in **Section-I**.
 - (ii) Section-II is a compulsory section of short questions.
 - (iii) Notations are usual everywhere.
 - (iv) The right hand side figures indicate marks of the sub question.

SECTION-I

1.	(A)	Discuss Economic Order Quantity (EOQ) Model with Constant rate of demand.	7
	(B)	Discuss Economic Order Quantity (EOQ) Model with Shortages.	7

- 2. (A) Discuss Economic Order Quantity (EOQ) Model with finite replenishment rate. 7
 - (B) A company plans to consume 760 pieces of a particular component. Pat records Indicates that the purchasing department spent ₹ 12,555 for placing 15,500 Purchase orders. The average inventory was valued at ₹ 45,000 and the total Storage cost was ₹ 7650 which included wages, taxes, rent, insurance etc. related to the store department. The company borrows capital at the rate of 10% per year. If the price of component is ₹ 12 and the lot-size is 10, find the following : (1) Purchase price per year (2) Purchase expenses per year (3) Storage expenses per year (4) Capital cost per year (5) Total cost per year.
- 3. (A) Compare and contrast CPM and PERT. Under what conditions would you recommend scheduling by PERT? Justify your answer with reasons.
 - (B) Draw an arrow diagram showing the following relationships.

Activity	Α	В	C	D	E	F	G	Н	Ι	J	Κ	L	М	N
Immediate Predecessor				A,B	B,C	A,B	С	D,E,F	D	G	G	H,J	K	I,L

AF-124

- 4. (A) Explain the basic logic of arrow networks.
 - (B) An established company has decided to add a new product to its line. It will buy the product from a manufacturing concern, package it, and sell it to a number of distributors selected on a geographical basis. Market research has indicated the volume expected and the size of sales force required. The steps shown in the following table are to be planned :

Activity	Description	Time (Weeks)
A	Organize sales office	6
В	Hire salesmen	4
С	Train salesmen	7
D	Select advertising agency	2
Е	Plan advertising campaign	4
F	Conduct advertising campaign	10
G	Design package	2
Н	Setup packaging facilities	10
Ι	Package initial stocks	6
J	Order stock from manufacturer	13
K	Select distributors	9
L	Sell to distributors	3
М	Ship stocks	5

5.	(A)	Explain Minimax and Maximin principle used in the game theory.							
	(B)	Let the payoff matrix is as follow: $\begin{bmatrix} 4 & -8\\ 5 & -2\\ 2 & 5 \end{bmatrix}$. Determine optimal strategies and							
		value of the game.	7						
6.	(A)	Explain Dominance Principle in game theory.	7						
	(B)	Solve the following game whose payoff matrix is given by :							
		$\begin{bmatrix} 3 & -1 & 4 & 6 & 7 \\ 1 & 0 & 2 & 4 & 12 \end{bmatrix}$							

 $\begin{bmatrix} -1 & 8 & 2 & 4 & 12 \\ 16 & 8 & 6 & 14 & 12 \\ 1 & 11 & -4 & 2 & 1 \end{bmatrix}$

7. Attempt any **FOUR** short questions :

- (1) Give types of direct inventory.
- (2) Explain any two cost involved in inventory problem.
- (3) Explain Looping and Dangling.
- (4) Explain Dummy activity.
- (5) Give list applications of PERT and CPM techniques in Project Management.
- (6) Define two person zero sum game.

7

7

7

8