Seat No. : \qquad

AE-114
 August-2021
 B.Sc., Sem.-VI

 310 : Mathematics

 310 : Mathematics
 (Graph Theory)

Time : 2 Hours]
[Max. Marks : 50
Instructions : (1) Attempt any THREE questions in Section - I.
(2) Section - II is a compulsory section of short questions.
(3) Notations are usual everywhere.
(4) The right hand side figures indicate marks of the sub question.

SECTION - I

Attempt any THREE of the following questions :

1. (a) If G is any graph with e edges and n vertices $v_{1}, v_{2}, v_{3}, \ldots \ldots . v_{n}$ then prove that

$$
\begin{equation*}
\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~d}\left(\mathrm{v}_{\mathrm{i}}\right) 2 \mathrm{e} . \tag{7}
\end{equation*}
$$

(b) Let G be a nonempty graph with atleast two vertices. If G is bipartite then prove that it has no odd cycles.
2. (a) Define isomorphism of graphs. Show that the following graphs (Fig-l) are isomorphic.

Fig. - 1
(b) Prove that the complete graph K_{n} has $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$ edges.
3. (a) Write down the adjacency and incidence matrices of the following graph (Fig-2).

Fig. - 2
(b) Let G be a graph with n vertices. If G is connected graph with $\mathrm{n}-1$ edges then prove that G is a tree.
4. (a) Let G be a graph with n vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ and let A denote the adjacency matrix of G w.r.t. this listing of the vertices. Let k be any positive integer and let A^{k} denote the matrix multiplication of k copies of A. Then prove that $(i, j)^{\text {th }}$ entry of A^{k} is the number of different $v_{i}-v_{j}$ walks in G of length k.
(b) Prove that a connected graph G is a tree if and only if every edge of G is a bridge.
5. (a) Give a list of all spanning trees, including isornorphic ones, of the complete graph K_{4}.
(b) For the following graph (Fig-3), find (i) all cut vertices (ii) all bridges (iii) a spanning tree (draw it) (iv) connectivity and (v) all n for which it is n -connected.

Fig. - 3
6. (a) Prove that if a vertex v of a connected graph G is a cut vertex of G then, there are two vertices u and w of G different from v such that v is on every $u-w$ path in $G .7$
(b) Use Back-tracking algorithm to find a shortest path from a vertex A to a vertex M in graph (Fig-4).

Fig. -4
7. (a) If G is a graph in which the degree of every vertex is atleast two then prove that G contains a cycle.
(b) Find closure of the graph (Fig-5) :

Fig. -5
8. (a) Write a short note on Konigsberg seven bridges problem.
(b) Use the Fleury's algorithm to produce an Euler tour for the following graph (Fig-6)

Fig. - 6

SECTION - II

9. Attempt any FOUR of the followings in short :
(i) Define any two : (a) Loop (b) Parallel edges (c) Empty Graph.
(ii) Define k-regular graph and give an example.
(iii) Draw fusion graph from the graph in (Fig-6) by fusing vertices E and F.
(iv) Define : (a) Forest and (b) Bridge.
(v) A graph is disconnected. What is its connectivity? Define spanning tree.
(vi) If connected graph G has 201 edges, what is the maximum possible number of vertices in G? Why?
(vii) Define : Hamiltonian Cycle. Is the graph in (Fig-5) Harniltonian?
(viii) Define : (a) Euler trail and (b) Euler tour.
