Seat No. :

AE-114

August-2021

B.Sc., Sem.-VI

310 : Mathematics

(Graph Theory)

Time : 2 Hours]

Instructions : (1) Attempt any **THREE** questions in Section – I.

- (2) Section II is a compulsory section of short questions.
- (3) Notations are usual everywhere.
- (4) The right hand side figures indicate marks of the sub question.

SECTION – I

Attempt any THREE of the following questions :

1. (a) If G is any graph with e edges and n vertices $v_1, v_2, v_3, \dots, v_n$ then prove that

$$\sum_{i=1}^{n} d(v_i) 2e.$$

- (b) Let G be a nonempty graph with atleast two vertices. If G is bipartite then prove that it has no odd cycles.
- (a) Define isomorphism of graphs. Show that the following graphs (Fig-l) are isomorphic.

(b) Prove that the complete graph K_n has $\frac{n(n-1)}{2}$ edges. 7

AE-114

P.T.O.

7

[Max. Marks : 50

3. (a) Write down the adjacency and incidence matrices of the following graph (Fig-2). 7

Fig. – 2

- (b) Let G be a graph with n vertices. If G is connected graph with n 1 edges then prove that G is a tree.
 7
- 4. (a) Let G be a graph with n vertices v₁, v₂, ..., v_n and let A denote the adjacency matrix of G w.r.t. this listing of the vertices. Let k be any positive integer and letA^k denote the matrix multiplication of k copies of A. Then prove that (i, j)th entry of A^k is the number of different v_i v_j walks in G of length k.
 7
 - (b) Prove that a connected graph G is a tree if and only if every edge of G is a bridge. 7
- 5. (a) Give a list of all spanning trees, including isomorphic ones, of the complete graph K_4 .
 - (b) For the following graph (Fig-3), find (i) all cut vertices (ii) all bridges (iii) a spanning tree (draw it) (iv) connectivity and (v) all n for which it is n-connected.
 7

Fig. - 3

- 6. (a) Prove that if a vertex v of a connected graph G is a cut vertex of G then, there are two vertices u and w of G different from v such that v is on every u w path in G. 7
 - (b) Use Back-tracking algorithm to find a shortest path from a vertex A to a vertex M in graph (Fig-4).
 7

- 7. (a) If G is a graph in which the degree of every vertex is atleast two then prove that G contains a cycle.
 7
 - (b) Find closure of the graph (Fig-5) :

- 8. (a) Write a short note on Konigsberg seven bridges problem.
 - (b) Use the Fleury's algorithm to produce an Euler tour for the following graph (Fig-6)7

P.T.O.

7

7

SECTION – II

- 9. Attempt any **FOUR** of the followings in short :
 - (i) Define any two : (a) Loop (b) Parallel edges (c) Empty Graph.
 - (ii) Define k-regular graph and give an example.
 - (iii) Draw fusion graph from the graph in (Fig-6) by fusing vertices E and F.
 - (iv) Define : (a) Forest and (b) Bridge.
 - (v) A graph is disconnected. What is its connectivity ? Define spanning tree.
 - (vi) If connected graph G has 201 edges, what is the maximum possible number of vertices in G ? Why ?
 - (vii) Define : Hamiltonian Cycle. Is the graph in (Fig-5) Hamiltonian ?
 - (viii) Define : (a) Euler trail and (b) Euler tour.

8