Seat No. : _____

NF-123

November-2021

B.Sc., Sem.-V

EC-305 : Mathematics

(Discrete Mathematics)

Time : 2 Hours]

[Max. Marks : 50

P.T.O.

Instructio	ons: (1) Attempt any three questions from Q-1 to Q-6.	
	(2) Q-7 is compulsory.	
	(3) Notations are usual, everywhere.	
	(4) Figures to the right indicate marks of the question/Sub-question.	
1. (A)	State and prove Modular Inequality.	7
(B)	Explain Hass Diagram and also draw the Hass Diagram of (S $_{105}$, D).	7
2. (A)		7
(B)	Prove (1) $a * (a \oplus b) = a$ (2) $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$.	7
3. (A)	State De' Morgan's laws and prove any one of them.	7
(B)	Define direct product of lattice and draw the Hass diagram of $\langle S_9 \times S_4, D \rangle$ s	7
4. (A)	Prove that every chain is Distributive Lattice.	7
(B)	For a complemented distributive lattice $\langle L, *, \oplus, 0, 1 \rangle$ s and for every $a, b \in L$, $a \leq b \Leftrightarrow a * b' = 0 \Leftrightarrow b' \leq a' \Leftrightarrow a' \oplus b' = 1$.	7
5. (A)		7
(B)	Express $x_1 \oplus x_2$ as sum of product (SOP) canonical form in three variables.	7

- 6. (A) Let $\langle B, *, \oplus, ', 0, 1 \rangle$ be a Boolean algebra with n variables x_1, x_2, \dots, x_n then
 - (1) There are 2^n minterms in the n variables namely minj; $j = 0, 1, 2, ..., 2^n 1$.
 - (2) $m_i * m_j = 0; \forall i \neq j \& i, j = 0, 1, 2, ... 2^n 1.$ 2n - 1

(3)
$$\bigoplus_{i=0}^{\infty} m_i = 1.$$

(B) In any Boolean algebra show that $a = 0 \Leftrightarrow ab' + a'b = b$.

7

8

- 7. Attempt any **four** of the following in short :
 - (1) For a Lattice (L, \leq) , prove that $a \leq b \Leftrightarrow a * b = a$.
 - (2) Give a relation on the set which is Irreflexive and Transitive but not Symmetric.
 - (3) Find complement of each element in the set of divisors of 18.
 - (4) Define : Lattice homomorphism.
 - (5) State : Stone representation theorem.
 - (6) Define : Equivalent Boolean Expression.

Seat No. : _____

[Max. Marks : 50

NF-123 November-2021 B.Sc., Sem.-V EC-305 : Mathematics (Number Theory)

Time : 2 Hours]

- **Instructions :** (1) All Questions in Section I carry equal marks.
 - (2) Attempt any **three** questions in Section I.
 - (3) Question 7 in Section II is Compulsory.

Section – I

NF-	123	3 P.T.	0.
	(B)	Solve the linear congruence $25x \equiv 15 \pmod{29}$.	7
5.	(A)	State and prove Wilson's theorem.	7
	(B)	Using Chinese remainder theorem, find integer x such that $2x \equiv 1 \pmod{3}$ $3x \equiv 1 \pmod{5}$; $5x \equiv 1 \pmod{7}$.	7
	(\mathbf{P})	$c \equiv d(mod n) \Rightarrow ac \equiv bd(mod n)$ and $a^k = b^k \pmod{n}$ for any positive integer k. Using Chinese remainder theorem find integer x such that $2x \equiv 1 \pmod{3}$	/
4.	(A)		7
	(B)	Using the Sieve of Eratosthenes find all primes $p \le 120$.	7
3.	(A)	Define "Congruence modulo relation for a fixed positive integer n". Also prove that it is an equivalence relation.	7
	(B)	Using the Euclidean algorithm to obtain the integer x and y such that $gcd(12378, 3054) = 12378x + 3054y$.	7
	(\mathbf{D})	where t is any integer.	7
		all other solutions are given by $x = x_0 + \left(\frac{b}{d}\right)t$; $y = y_0 - \left(\frac{a}{d}\right)t$	_
2.	(A)	Prove that the linear Diophantine equation $ax + by = c$ has a solution iff d c, where d = g.c.d.(a, b). Also prove that if x_0 , y_0 is a solution of this equation then	
		24x + 138y = 18.	7
1.	(B)	Find the all positive solutions in the integers for the Diophantine equation	,
1.	(A)	State and prove Division algorithm theorem.	7

			Section – II		
		(ii)	Find the remainder when $7^{234} + 4^{111}$ is divisible by 5.	7	
	(B)	(i)	Find the remainder when the sum $1! + 2! + 3! + + 100!$ is divisible by 12.		
6.	(A)	A) State and prove the Fermat's little theorem.			

7. Attempt any FOUR :

- If p is a prime number and p/ab then prove that p/a or p/b. (1)
- A number 360 can be written as product of prime in canonical form. (2)
- Prove that the number N = 1571724 is divisible by 9 and 11. (3)
- If $ax \equiv ay \pmod{n}$ and $(a, n) \equiv 1$, then show that $x \equiv y \pmod{n}$. (4)
- (5) Define Euler's Phi-function.
- (6) State (Only) Euler's theorem.

Seat No. : _____

NF-123

November-2021

B.Sc., Sem.-V EC-305 : Mathematics (Financial Mathematics)

Time : 2 Hours]

[Max. Marks : 50

- **Instructions :** (1) Attempt any **three** questions from Q-1 to Q-6.
 - (2) Q-7 is compulsory.
 - (3) Notations are usual, everywhere.
 - (4) Figures to the right indicate marks of the question/sub-question.
- (a) Write a short Note on Time Value of Money.
 (b) What is the Future value of ₹ 21,000 invested for 10 years, for opportunity cost (interest rate) is 8% per year compounded annually, semi-annually, quarterly, monthly, weekly, and continuously?
- 2. (a) Define shares, bonds, index and arbitrage also write no arbitrage principle. 7
 - (b) What is the Future value of ₹ 40,000 invested for 7 years, for opportunity cost (interest rate) is 5% per year compounded semi-annually, quarterly, monthly, and daily ? Also find effective rate of interest in each case.
- 3. (a) Write a short note on comparison of NPV and IRR.
 - (b) Consider the cash flow with annual payments of 1000, -2000, -1000, 2000. Suppose the relevant annual compound rates and finance rate is 10% and reinvestment rate 15%. Find MIRR.

5

7

- (a) Consider a bond of n years with annual coupon payment C and face value F, if its yield (yield to maturity) is λ continuously compounded. Then derive the formula for Macaulay Duration.
 - (b) A company wants to immunize its bond portfolio for a targeted period of 3 years for this purpose company has decided to invest ₹ 1,00,000 at present and the details of two bonds are as follows.

	Bond A	Bond B
Face Value	1000	1000
Market Price	986.5	1035
Macaulay Duration	4 years	2 years

Determine the amount of money invested in each bond.

- (a) Discuss Markowitz portfolio optimization problem with short selling and without short selling.
 - (b) Calculate the portfolios mean return and variance using the following details, $R = (0.2, 1.6, 0.9)^{T}$, W = (0.3, 0.4, 0.4) and 7

$$CV = \begin{bmatrix} 1.12 & 1.4 & 0.9 \\ 1.4 & 2.11 & 0.60 \\ 0.9 & 0.60 & 1.32 \end{bmatrix}$$
find $\bar{r} \& \sigma^2$ for portfolio.

- 6. (a) Write a short note on portfolio diagram and choice of asset. 7
 - (b) Consider a portfolio of three assets A, B & C with the following properties. 7

 $\bar{r}_{A} = 0.12, \ \bar{r}_{B} = 0.41, \ \bar{r}_{C} = 0.16$

$$\sigma_{A} = \sigma_{B} = \sigma_{c} = 1 \& \sigma_{AB} = \sigma_{BC} = \sigma_{AC} = 0$$

For fixed $\bar{r} = 0.25$ find the minimum variance portfolio.

NF-123

7

7

- 7. Attempt any **four** of the following in short :
 - (a) Define inflation and write its formula.
 - (b) Write future value of 100 after one year with annual interest rate 10%.
 - (c) Define MIIR.
 - (d) Write the Formula for Fisher Weill Duration for discrete compounding.
 - (e) Define diversification in portfolio.
 - (f) Write the statement of two fund theorem.