\qquad

November-2021
B.Sc., Sem.-V

EC-305 : Mathematics
(Discrete Mathematics)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Attempt any three questions from Q-1 to Q-6.
(2) Q-7 is compulsory.
(3) Notations are usual, everywhere.
(4) Figures to the right indicate marks of the question/Sub-question.

1. (A) State and prove Modular Inequality. 7
(B) Explain Hass Diagram and also draw the Hass Diagram of $\left(\mathrm{S}_{105}, \mathrm{D}\right)$.
2. (A) Let $\mathrm{X}=\mathbb{N}$, and relation D is defined on \mathbb{N} as, " x Dy means x divides $\mathrm{y} " \forall x, \mathrm{y} \in \mathbb{N}$. Then show that $\langle\mathbb{N}, \mathrm{D}\rangle$ is Partially Ordered Set (POSET) but not a chain.
(B) Prove (1) $\mathrm{a}^{*}(\mathrm{a} \oplus \mathrm{b})=\mathrm{a} \quad$ (2) $\mathrm{a} \oplus(\mathrm{b} * \mathrm{c}) \leq(\mathrm{a} \oplus \mathrm{b}) *(\mathrm{a} \oplus \mathrm{c})$.
3. (A) State De' Morgan's laws and prove any one of them.
(B) Define direct product of lattice and draw the Hass diagram of $\left\langle S_{9} \times S_{4}\right.$, $\left.D\right\rangle$ s
4. (A) Prove that every chain is Distributive Lattice.
(B) For a complemented distributive lattice $\left\langle\mathrm{L},{ }^{*}, \oplus, 0,1\right\rangle \mathrm{s}$ and for every $\mathrm{a}, \mathrm{b} \in \mathrm{L}$, $a \leq b \Leftrightarrow a^{*} b^{\prime}=0 \Leftrightarrow b^{\prime} \leq a^{\prime} \Leftrightarrow a^{\prime} \oplus b^{\prime}=1$.
5. (A) Let $\left\langle\mathrm{B},{ }^{*}, \oplus,{ }^{\prime}, 0,1\right\rangle$ be a Boolean algebra. Then a non-empty element a of B is an atom of B if and only if either $\mathrm{a}^{*} x=0$ or a $\oplus x=\mathrm{a} ; \forall x \in \mathrm{~B}$.
(B) Express $x_{1} \oplus x_{2}$ as sum of product (SOP) canonical form in three variables.
6. (A) Let $\left\langle\mathrm{B},{ }^{*}, \oplus,{ }^{\prime}, 0,1\right\rangle$ be a Boolean algebra with n variables $x_{1}, x_{2}, \ldots . x_{\mathrm{n}}$ then
(1) There are 2^{n} minterms in the n variables namely minj; $=0,1,2, \ldots 2^{\mathrm{n}}-1$.
(2) $\mathrm{m}_{\mathrm{i}} * \mathrm{~m}_{\mathrm{j}}=0 ; \forall \mathrm{i} \neq \mathrm{j} \& \mathrm{i}, \mathrm{j}=0,1,2, \ldots 2^{\mathrm{n}}-1$.

$$
2 n-1
$$

(3) $\oplus \mathrm{m}_{\mathrm{i}}=1$. $\mathrm{i}=0$
(B) In any Boolean algebra show that $\mathrm{a}=0 \Leftrightarrow \mathrm{ab}+\mathrm{a}^{\prime} \mathrm{b}=\mathrm{b}$.
7. Attempt any four of the following in short:
(1) For a Lattice (L, \leq), prove that $\mathrm{a} \leq \mathrm{b} \Leftrightarrow \mathrm{a} * \mathrm{~b}=\mathrm{a}$.
(2) Give a relation on the set which is Irreflexive and Transitive but not Symmetric.
(3) Find complement of each element in the set of divisors of 18.
(4) Define : Lattice homomorphism.
(5) State : Stone representation theorem.
(6) Define : Equivalent Boolean Expression.
\qquad

November-2021
B.Sc., Sem.-V

EC-305 : Mathematics

(Number Theory)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) All Questions in Section - I carry equal marks.
(2) Attempt any three questions in Section - I.
(3) Question - 7 in Section - II is Compulsory.

Section - I

1. (A) State and prove Division algorithm theorem.
(B) Find the all positive solutions in the integers for the Diophantine equation $24 x+138 y=18$.
2. (A) Prove that the linear Diophantine equation $\mathrm{a} x+\mathrm{by}=\mathrm{c}$ has a solution iff $\mathrm{d} \mid \mathrm{c}$, where $\mathrm{d}=$ g.c.d. (a, b). Also prove that if x_{0}, y_{0} is a solution of this equation then all other solutions are given by $x=x_{0}+\left(\frac{\mathrm{b}}{\mathrm{d}}\right) \mathrm{t} ; \mathrm{y}=\mathrm{y}_{0}-\left(\frac{\mathrm{a}}{\mathrm{d}}\right) \mathrm{t}$
where t is any integer.
(B) Using the Euclidean algorithm to obtain the integer x and y such that $\operatorname{gcd}(12378$, $3054)=12378 x+3054 y$.
3. (A) Define "Congruence modulo relation for a fixed positive integer n". Also prove that it is an equivalence relation.
(B) Using the Sieve of Eratosthenes find all primes $\mathrm{p} \leq 120$. 7
4. (A) Let $n>0$ be fixed and a, b, c are integers then prove that if $a \equiv b(\bmod n)$, $\mathrm{c} \equiv \mathrm{d}(\bmod \mathrm{n}) \Rightarrow \mathrm{ac} \equiv \mathrm{bd}(\bmod \mathrm{n})$ and $\mathrm{a}^{\mathrm{k}}=\mathrm{b}^{\mathrm{k}}(\bmod \mathrm{n})$ for any positive integer k .
(B) Using Chinese remainder theorem, find integer x such that $2 x \equiv 1(\bmod 3)$ $3 x \equiv 1(\bmod 5) ; 5 x \equiv 1(\bmod 7)$.
5. (A) State and prove Wilson's theorem. 7
(B) Solve the linear congruence $25 x \equiv 15(\bmod 29)$.
6. (A) State and prove the Fermat's little theorem.
(B) (i) Find the remainder when the sum $1!+2!+3!+\ldots+100$! is divisible by 12 .
(ii) Find the remainder when $7^{234}+4^{111}$ is divisible by 5 .

Section - II

7. Attempt any FOUR :
(1) If p is a prime number and p / ab then prove that p / a or p / b.
(2) A number 360 can be written as product of prime in canonical form.
(3) Prove that the number $\mathrm{N}=1571724$ is divisible by 9 and 11 .
(4) If ax $\equiv \mathrm{ay}(\bmod \mathrm{n})$ and $(\mathrm{a}, \mathrm{n})=1$, then show that $x \equiv \mathrm{y}(\bmod \mathrm{n})$.
(5) Define Euler's Phi-function.
(6) State (Only) Euler's theorem.
\qquad

November-2021
B.Sc., Sem.-V

EC-305 : Mathematics
(Financial Mathematics)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Attempt any three questions from Q-1 to Q-6.
(2) Q-7 is compulsory.
(3) Notations are usual, everywhere.
(4) Figures to the right indicate marks of the question/sub-question.

1. (a) Write a short Note on Time Value of Money.
(b) What is the Future value of ₹ 21,000 invested for 10 years, for opportunity cost (interest rate) is 8% per year compounded annually, semi-annually, quarterly, monthly, weekly, and continuously ?
2. (a) Define shares, bonds, index and arbitrage also write no arbitrage principle.
(b) What is the Future value of ₹ 40,000 invested for 7 years, for opportunity cost (interest rate) is 5\% per year compounded semi-annually, quarterly, monthly, and daily? Also find effective rate of interest in each case.
3. (a) Write a short note on comparison of NPV and IRR.
(b) Consider the cash flow with annual payments of 1000, -2000, $-1000,2000$. Suppose the relevant annual compound rates and finance rate is 10% and reinvestment rate 15%. Find MIRR.
4. (a) Consider a bond of n years with annual coupon payment C and face value F , if its yield (yield to maturity) is λ continuously compounded. Then derive the formula for Macaulay Duration.
(b) A company wants to immunize its bond portfolio for a targeted period of 3 years for this purpose company has decided to invest $₹ 1,00,000$ at present and the details of two bonds are as follows.

	Bond A	Bond B
Face Value	1000	1000
Market Price	986.5	1035
Macaulay Duration	4 years	2 years

Determine the amount of money invested in each bond.
5. (a) Discuss Markowitz portfolio optimization problem with short selling and without short selling.
(b) Calculate the portfolios mean return and variance using the following details,

$$
\begin{aligned}
& \mathrm{R}=(0.2,1.6,0.9)^{\mathrm{T}}, \mathrm{~W}=(0.3,0.4,0.4) \text { and } \\
& \\
& \quad \mathrm{CV}=\left[\begin{array}{ccc}
1.12 & 1.4 & 0.9 \\
1.4 & 2.11 & 0.60 \\
0.9 & 0.60 & 1.32
\end{array}\right] \text { find } \overline{\mathrm{r}} \& \sigma^{2} \text { for portfolio. }
\end{aligned}
$$

6. (a) Write a short note on portfolio diagram and choice of asset.
(b) Consider a portfolio of three assets $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ with the following properties.

$$
\begin{aligned}
& \overline{\mathrm{r}}_{\mathrm{A}}=0.12, \overline{\mathrm{r}}_{\mathrm{B}}=0.41, \overline{\mathrm{r}}_{\mathrm{C}}=0.16 \\
& \sigma_{\mathrm{A}}=\sigma_{\mathrm{B}}=\sigma_{\mathrm{c}}=1 \& \sigma_{\mathrm{AB}}=\sigma_{\mathrm{BC}}=\sigma_{\mathrm{AC}}=0
\end{aligned}
$$

For fixed $\overline{\mathrm{r}}=0.25$ find the minimum variance portfolio.
7. Attempt any four of the following in short :
(a) Define inflation and write its formula.
(b) Write future value of 100 after one year with annual interest rate 10%.
(c) Define MIIR.
(d) Write the Formula for Fisher Weill Duration for discrete compounding.
(e) Define diversification in portfolio.
(f) Write the statement of two fund theorem.

