Seat No.:	

NB-116

November-2021

B.Sc., Sem.-V

CC-301 : Biotechnology (Molecular Biology) (New)

Time: 2 Hours [Max. Marks: 50 **Instructions:** (1) All questions in **Section** – I carry equal marks. Attempt any THREE questions in Section – I. (2) Question – 9 in Section – II is COMPULSORY. (3) Draw figures where necessary. Show question number against each (4) answer. (5) Figures in right are marks. Section - I (A) What is the significance of genome mapping? Write a brief note on cytogenetic 1. 7 map. 7 (B) Discuss role of molecular markers in genetic mapping. 2. (A) Illustrate genetic map of Saccharomyces cerevisiae. 7 (B) Discuss applications of human Genome project. 7 3. (A) Explain DNA sequencing Maxam Gilbert method. 7 Write a note on mRNA isolation and cDNA preparation. 7 4. 7 (A) Write a detail note on plasmid isolation from Bacteria. Discuss Fluorescent *in situ* hybridization and its applications. 7 5. (A) What is an artificial chromosome? Describe YAC in brief. 7 (B) What are restriction enzymes? Discuss their role in rDNA technology. **NB-116** P.T.O. 1

6.	(A)	library.						
	(B)	Discuss outline of recombinant DNA technology.						
7.	(A)	Wha	at is Operon ? Explai	n negative cont	rol in lac operon with suitable diagrams.	7		
	(B)	Exp	lain attenuation regu	lation in operor	s stating suitable example.	7		
8.	(A)		at are exons and in hylation of DNA and		ribe regulation of gene expression by aryotes.	7		
	(B)	Exp	lain regulatory mech	anism in bacter	iophages.	7		
				Section – I	I			
9.	Ans	wer tł	ne following: (any e	ight)		8		
	(1)	Wha	at is the unit of a gen	etic map?				
		(a)	Centimeter	(b)	Nanometer			
		(c)	Angstrom	(d)	Centimorgan			
	(2)	Inte	rnational Human Ge	nome Project w	as initiated by			
		(a)	National Institute of	of Health (NIH)				
		(b)	Celera genomics					
		(c)	US Department of	Energy (DoE)				
		(d)	NOH and US DoE					
(3) The variation in the restriction lengths of DNA fragment between individual a species is called-						•		
		(a)	AFLP	(b)	RFLP			
		(c)	SSR	(d)	RAPD			
	(4)	The	The lactose represser is encoded by					
		(a)	Lac-1	(b)	Lac-A			
		(c)	Lac-Y	(d)	Lac-Z			
	(5)	Who	ere does a represser b	oind an operon				
		(a)	Operator	(b)	Promoter			
		(c)	Inducer	(d)	Catabolite activator site			
NB-	116			2				

(6)	The	The lac represser has which of the following DNA-binding motif?							
	(a)	Helix-turn-helix	(b)	Zinc finger					
	(c)	Homeodomain	(d)	Leucine zipper					
(7)		nich of the following types of RNA occurs in largest amount amongst cell [As?							
	(a)	mRNA	(b)	tRNA					
	(c)	sRNA	(d)	rRNA					
(8)	Liga	se enzyme is used for							
	(a)	joining bits of DNA							
	(b)	splitting DNA thread into sm	all bit	s					
	(c)	denaturation							
	(d)	None of the above							
(9)	_	ene for insulin has been insert rotein product only. Such a ve		to a vector for the purpose of obtaining called					
	(a)	expression vector							
	(b)	suppression vector							
	(c)	storage vector for genomic library							
	(d)	None of the above							
(10)	Tran	nsfer of recombinant plasmid into E. Coli cells to make them competent ds							
	(a)	heat treatment	(b)	UV rays treatment					
	(c)	CaCl ₂ treatment	(d)	lysis					
(11)	Whi	ch of the following statement a	about	a vector is correct?					
	(a)	All vectors are plasmids only	'.						
	(b)	Plasmids, phages can be used	l as ve	ectors.					
	(c)	Fungi can also be used as vec	ctors.						
	(d)	Cyanobacteria can also be us	ed as	vectors.					
(12)	Rest	riction endonucleases cut DNA	A at a	specific site called					
	(a)	ligation site	(b)	ori					
	(c)	recognition sequence	(d)	replication site					

	(a)	variable nucleotide triplet repeat							
	(b)	2. variable nucleoside tandem repeat							
	(c)	variable nucleoside triplet rep	eat						
	(d)	4. variable number of tandem	repea	its					
(14)	(14) Which one of the following statements about human genome project is correct?								
	(a)	It helps in identifying the exa	ct loca	ation of genes on chromosomes.					
	(b)	b) The information gathered from this project helps in curing genetic diseases.							
	(c)	This helps in developing artif	icial o	organs.					
	(d)	It helps in determining the se human genome.	equenc	ce of 3 billion base pairs that makes up					
(15)		ac represser is a tetramer represser is a	ressec	d when bound to the inducer. The trp					
	(a)) Dimer inactivated when bound to the inducer							
	(b)	Dimer activated on inducer be	Dimer activated on inducer binding						
	(c)	Tetramer inactivated on induc	er bir	nding					
	(d)	Tetramer activated on induce	r bind	ing					
(16)		n uncharged tRNA concentrity of tryptophan operon?	ation	is low what will you expect as the					
	(a)	Low	(b)	Medium					
	(c)	High	(d)	Very high					
(17)	() In which microorganism will you find attenuation by alternate loop format due to ribosomal stalling?								
	(a)	S. aureus	(b)	E. coli					
	(c)	S. typhimurium	(d)	B. subtlis					
(18)	Mole	ecules used for quorum sensing	g in G	ram-positive bacteria are-					
	(a)	Allo inducer	(b)	Auto inducer					
	(c)	Exo inducer	(d)	None of the above					

NB-116 4

(13) VNTR is -

(19)	not a	state in which specialized cells are produced within a biofilm. These cells are actively growing or dividing cells, they are not susceptible to antibiotics and a specialized survivor cells-					
	(a)	persistor cell	(b)	recalcitrant cell			
	(c)	sensitive cells	(d)	None of the above			
(20) Differential expression of the genetic material depending on its paren inheritance gives							
	(a)	Penetrance	(b)	Expressivity			
	(c)	Imprinting	(d)	Non-penetrance			
(21)	Cho	ose the wrong statement in the	ong statement in the regulation of imprinting.				
	(a)	Methylation of the C residues are seen in the CpG islands.					
	(b)	The methylation prevents binding of the RNA polymerase.					
	(c)	Genes are methylated at random.					
	(d)	Deletion of gene with methylated CpG islands will have no effect.					

Seat No.	:	

NB-116

November-2021

B.Sc., Sem.-V

CC-301 : Biotechnology (Molecular Biology) (Old)

Tim	ie:2 I	2 Hours] [Max. Marks : 50				
Instructions: (1) Draw figures wherever necessary.						
			(2)	Write question number against each answer.		
			(3)	Answer any three out of initial eight main questions. Question 9 is compulsory .		
				Section – I		
1.	(A)	Writ	te appl	lications of genome mapping.	7	
	(B)	Exp	lain di	fferent types of mapping of genes.	7	
2.	(A)	Give	e a brie	ef account of Human genome project.	7	
	(B)	Exp	lain ge	enetic map of E.coli with a diagram.	7	
3.	(A)	Desc	eribe N	Maxam-Gilbert method of DNA sequencing.	7	
	(B)	Exp	lain di	fferent steps to construct cDNA and its uses.	7	
4.	(A)	Disc	uss in	brief about different molecular markers.	7	
	(B)	Writ	te abou	ut DNA fingerprinting and its applications.	7	
5.	(A)	Disc	uss in	detail about pBR322 with a diagram.	7	
	(B)	Outl	ine the	e steps of rDNA technology.	7	
6.	(A)	Exp	lain th	e role of DNA modifying enzymes in rDNA technology.	7	
	(B)	Writ	te abou	ut procedure for detection and expression of cloned gene in host cell.	7	
NB-	116			6		

7.	(A)	Write about Trp negative and attenuation control.	7
	(B)	Discuss lysogeny control in lambda phage.	7
8.	(A)	Explain cis-trans regulatory elements in eukaryotes.	7
	(B)	Explain prokaryote and eukaryotic gene regulation.	7
9.	Ansv	wer any eight of the following:	8
	(1)	What is synteny?	
	(2)	How many chromosomes are present in Arabidopsis?	
	(3)	Define linkage map.	
	(4)	What is contribution of Craig Venter?	
	(5)	What is genome size of yeast in terms of base pairs?	
	(6)	What is DNA foot printing?	
	(7)	What is MALDI-TOF?	
	(8)	What is FISH?	
	(9)	Write bases present in DNA sequence.	
	(10)	Give two examples of artificial chromosome vectors.	
	(11)	What is shot gun method?	
	(12)	What are gene libraries?	
	(13)	Give two examples of restriction enzymes.	
	(14)	Write mechanism of DNA ligase.	
	(15)	What is shuttle vector?	
	(16)	Differentiate intron and exon.	
	(17)	What is catabolic repression?	
	(18)	Write importance of DNA methylation.	
	(19)	What is dorsal protein?	
	(20)	What is post-transcriptional modification?	

NB-116 7

NB-116 8