Seat No. : \qquad

DG-101

December-2021
B.B.A., Sem.-III

CC-206 : Elementary Statistics

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Graph paper will be supplied.
(2) Use of simple circular is allowed.
(3) All question in Section-I carry equal marks.
(4) Attempt any two questions in Section-I.
(5) Question-5 in Section-II is compulsory.

Section - I

1. (A) A bag contains 5 white, 3 black and 6 red balls. 3 balls are taken at random from the bag. Find the probability that (i) 2 balls are of white colour. (ii) all the three balls are of different colours. (iii) none of the ball is black.
(B) Define Mathematical expectation and state its properties.
2. (A) State the properties of Binomial distribution and Poisson Distribution.
(B) 100 electric bulbs are found to be defective in a lot of 5000 bulbs. Find the probability that at the most 3 bulbs are defective in a box of 100 bulbs.

$$
\begin{equation*}
\left[\mathrm{e}^{-2}=0.1353\right] \tag{10}
\end{equation*}
$$

3. (A) Calculate correlation coefficient from the following data :

x	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
y	0.30	0.29	0.29	0.25	0.24	0.24	0.24	0.29	0.18	0.15

(B) In a trivariate distribution $2 \sigma_{1}=3 \sigma_{2}=4 \sigma_{3}=12$ and $\Delta=\left[\begin{array}{ccc}1 & 0.6 & 0.4 \\
r_{21} & 1 & 0.5 \\
r_{31} & \mathrm{r}_{32} & 1\end{array}\right]$

Find $\mathrm{r}_{32.1,}, \mathrm{R}_{3.21}$ and $\mathrm{b}_{23.1}$
4. (A) Draw $\overline{\mathrm{X}}$ and R chart from the following data :

Sample No.	1	2	3	4	5	6	7	8	9	10
$\overline{\mathrm{X}}$	128	131	135	129	132	141	121	155	139	142
R	21	31	39	21	19	30	25	28	25	20
$\left[\mathrm{~A}_{2}=0.577, \mathrm{D}_{3}=0, \mathrm{D}_{4}=2.115\right]$										

(B) For a $\operatorname{SSP}(2000,300,3)$, find (i) ASN (ii) AOQ if $\mathrm{P}=1 \%\left(\mathrm{e}^{-3}=0.0498\right)$

Section - II

5. Give the following answer : (Attempt any 10)
(1) A set representing all possible outcomes of a random experiment is called a
\qquad -.
(a) Sample Space
(b) Event
(c) Probability
(d) None
(2) If $\mathrm{E}(\mathrm{x})=5$, then find $\mathrm{E}(2 \mathrm{X}+3)$
(a) 1.2
(b) 0.012
(c) 0.12
(d) None
(3) What is the other name of classical definition of probability?
(a) Axiomatic
(b) Mathematical
(c) Statistical
(d) None
(4) If A and B are mutually exclusive events then $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=$ \qquad .
(a) $\mathrm{P}(\mathrm{A})$
(b) $\quad \mathrm{P}(\mathrm{B})$
(c) $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
(d) None
(5) A box contains 6 black and 4 white balls. Two balls are drawn at random from it. Find the probability that both are black.
(a) 0.23
(b) 0.24
(c) 1
(d) 0.33
(6) If there is a matter of accident, \qquad distribution is followed.
(a) Poisson
(b) Binomial
(c) Normal
(d) None
(7) The Binomial Distribution is a distribution of \qquad variable.
(a) Random
(b) Discrete
(c) Continuous
(d) None
(8) The mean of Poisson Distribution is 1.44 , its S.D. $=$ \qquad .
(a) 1.22
(b) 1
(c) 1.2
(d) None
(9) Hyper Geometric Distribution has a wide application in \qquad .
(a) S.Q.C.
(b) Correlation
(c) Normal
(d) Acceptance Sampling
(10) The formula of mean for Hypergeometric distribution is \qquad .
(a) np
(b) $\frac{\mathrm{mr}}{\mathrm{m}+\mathrm{n}}$
(c) $\mathrm{e}^{-\mathrm{m}}$
(d) None
(11) In rank correlation if $\sum \mathrm{d}^{2}=0, \mathrm{r}=$ \qquad .
(a) -1
(b) 0
(c) +1
(d) None
(12) If $\mathrm{b}_{12.3}=0.1705$ and $\mathrm{b}_{21.3}=2.7225$, find $\mathrm{r}_{12.3}$.
(a) 0.5
(b) 1.5
(c) 0.6813
(d) None
(13) On which distribution C-Chart is based ?
(a) Normal
(b) Binomial
(c) Poisson
(d) None
(14) Which type of chart is more sensitive ?
(a) R
(b) np
(c) C
(d) None
(15) If $\mathrm{Pa}=0.92$, what is Producer's Risk?
(a) 0.92
(b) 0.08
(c) 1
(d) 0
