Seat No. : \qquad

DF-103

December-2021
B.Sc., Sem.-III

202: Mathematics

(Linear Algebra-I)
Theory
Time : 2 Hours]
[Max. Marks : 50
સૂચના : (1) પ્રશ્નો $\mathbf{1}$ થી $\mathbf{8}$ માંથી કોઈપણ ત્રણના જવાબ આપો.
(2) પ્રશ્ન 9 ફ૨જીયાત છે.
(3) જમણી બાજુના અંક ગુણ દર્શાવે છે.

વિભાગ-I

1. (A) સાબિત કરો કે સદિશ અવકાશ v નો અરિક્ત ઉિપગણ S એ V નો ઉપપાવકાશ હોય તો અને તો જ તે નીચે મુજબની શરતોનું પાલન કરે :
(i) જો $u, v \in S$ तो $u+v \in S$
(ii) જો $u \in S$ અને α અદિશ તો $\alpha u \in S$.
(B) સાબિત કરો કे $(3,7) \in[\{(1,2),(0,1)\}]$ Чણ $(3,7) \notin[\{(1,2),(2,4)\}]$.
2. (A) સદિશ અવકાશની વ્યાખ્યા આપો. કોઈપણ સદિશ અવકાશ Vમાં સાબિત કરો કે
(i) $\alpha \bar{o}=\bar{o}$ પ્રत्येક અદિશ α માટે
(ii) $\mathrm{ou}=\overline{\mathrm{o}}$ પ્રत्येક $\mathrm{u} \in \mathrm{V}$ અને
(iii) $(-1) \mathrm{u}=-\mathrm{u}$ પ્રत्येક $\mathrm{u} \in \mathrm{V}$.
(B) જો $\mathrm{L}=\{(x, 2 x,-3 x, x) / x \in \mathrm{R}\} \subset \mathrm{R}^{4}$ तो સાબિત કરો કे L એ R^{4} નો ઉપપાવકાશ છે.
3. (A) પરિમાણ પ્રમેય લખો અને સાબિત કરો.
(B) સાબિત કરો કે ગણા $\{(1,1,1),(1,-1,1),(0,1,1)\}$ એ R^{3} નો આધાર છે.
4. (A) જો U અને W એ સદિશ અવકાશ Vના ઉપાવકાશો હોય તો સાબિત કરો કે $\mathrm{U}+\mathrm{W}$ એ V નો ઉપાવકાશ છે, તથા $\mathrm{U}+\mathrm{W}=[\mathrm{U} \cup \mathrm{W}]$.
(B) જો U અને W એ સદિશ અવકાશ V ના ઉપાવકાશો છે; તથા $Z=U+W$ તો સાબિત કરો કે $\mathrm{Z}=\mathrm{U} \oplus \mathrm{W}$ હોય તો અને તો જ તે નીચે મુજબની શરતોનું પાલન કરે :
કોઈપણ $z \in Z$ ને $z=u+w ; u \in U, w \in W$ ને અનન્ય ૨ીતે દર્શાવી શકાય છે.
5. (A) કોટયાંક-શૂન્યાંક પ્રમેય લખો અને સાબિત કરે.
(B) જો સુરેખ પરિવર્તન $\mathrm{T}: \mathrm{R}^{4} \rightarrow \mathrm{R}^{3}$ એ $\mathrm{Te}_{1}=(1,1,1), \mathrm{Te}_{2}=(1,-1,1), \mathrm{Te}_{3}=(1,0,0)$ અને $\mathrm{Te}_{4}=(1,0,1)$ વડે વ્યાખ્યાયિત હોય તો $\mathrm{r}(\mathrm{T})+\mathrm{n}(\mathrm{T})=\operatorname{dim} \mathrm{R}^{4}=4$ ચકાશો.
6. (A) સુરેખ વિધેયની વ્યાખ્યા આપો. જો $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ એ સુરેખ વિધેય હોય તો સાબિત કરો કે
(i) $\mathrm{T}\left(\overline{\mathrm{o}}_{\mathrm{u}}\right)=\overline{\mathrm{o}}_{\mathrm{v}}$
(ii) $\mathrm{T}(-\mathrm{u})=-\mathrm{T}(\mathrm{u})$ અने
(iii) $\mathrm{T}\left(\alpha_{1} \mathrm{u}_{1}+\alpha_{2} \mathrm{u}_{2}+\ldots . .+\alpha_{4} \mathrm{u}_{4}\right)$

$$
=\alpha_{1} \mathrm{Tu}_{1}+\alpha_{2} \mathrm{Tu}_{2}+\ldots .+\alpha_{4} \mathrm{Tu}_{4}
$$

(B) જો $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ હોય તો સાબિત કરો કે $\mathrm{T}\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right)$ એ સુરેખ વિધેય છે.
7. (A) જો $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ એ व્યસ્ત કારક સુરેખ પરિવર્તન હોય તો સાબિત કરો કે $\mathrm{T}^{-1}: \mathrm{U} \rightarrow \mathrm{V}$ પણ સુરેખ, એક-એક અને વ્યાપ્ત છે.
(B) જો સુરેખ-પરિવર્તન $T: R^{3} \rightarrow R^{3}$ એ
$\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+x_{3}, 2 x_{1}+3 x_{2}-\frac{x_{3}}{2}, x_{1}+x_{2}-2 x_{3}\right)$ વડે વ્યાખ્યાયિત હોય અને જો $\mathrm{B}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}, \mathrm{B}_{2}=\{(1,1,0),(1,2,3),(-1,0,1)\}$ હोય तो $\left(\mathrm{T}: \mathrm{B}_{1}, \mathrm{~B}_{2}\right)$ મેળવો.
8. (A) સાબિત કરો કે સદિશ અવકાશ $\mu_{\mathrm{m} \times \mathrm{n}}$ નું પરિમાણ mn છે.
(B) $\quad \mathrm{A}=\left[\begin{array}{ccc}3 & 1 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right]$

માટે કોટયાંક-શૂન્યાંક પ્રમેય ચકાશો.

વિભાગ-II

9. ટૂંકમાં જવાબ આપો : (કોઈપણ ચા૨)
(1) સુરેખ પરિવર્તન માટે શુન્યાવકાશ અને વિસ્તા૨ ગણની વ્યાખ્યા આપો.
(2) વ્યસ્ત કા૨ક સુરેખ પરિવર્તનની વ્યાખ્યા આપો.
(3) સુરેખ પરિવર્તન સાથે સંકળાયેલા શ્રેણિાકની વ્યાખ્યા આપો.
(4) સEિશ અવકાશના ઉપાવકાશની વ્યાખ્યા આપો.
(5) l.I, l.D અને ગણની વિસ્તૃતિની વ્યાખ્યા આપો.
(6) સદિશ અવકાશના પરિમાણની વ્યાખ્યા આપો.

Seat No. : \qquad

DF-103

December-2021
B.Sc., Sem.-III

202 : Mathematics
(Linear Algebra-I)
Theory
Time : 2 Hours]
[Max. Marks : 50
Instructions : (1) Attempt any three questions from questions $\mathbf{1}$ to 8.
(2) Question No. 9 is compulsory.
(3) The figures on the right indicates marks of the question.

Section-I

1. (A) Prove that a non-empty subset of a vector space v is a subspace of V if and only the following conditions are satisfied:
(i) If $u, v \in S$ then $u+v \in S$
(ii) If $u \in S$ and α a scalar then $\alpha u \in S$.
(B) Prove the $(3,7) \in[\{(1,2),(0,1)\}]$ but $(3,7) \notin[\{(1,2),(2,4)\}]$.
2. (A) Define vector space. In any vector space V, prove that
(i) $\alpha \bar{o}=\bar{o}$ for every scalar α
(ii) $\mathrm{ou}=\overline{\mathrm{o}}$ for every $\mathrm{u} \in \mathrm{V}$
(iii) $\quad(-1) \mathrm{u}=-\mathrm{u}$ for every $\mathrm{u} \in \mathrm{V}$
(B) Let $\mathrm{L}=\{(x, 2 x,-3 x, x) / x \in \mathrm{R}\} \subset \mathrm{R}^{4}$. Then prove that L is a subspace of R^{4}.
3. (A) State and prove dimension theorem.
(B) Prove that the set $\{(1,1,1),(1,-1,1),(0,1,1)\}$ is a basis of R^{3}.
4. (A) If U and W are two subspaces of a vector space V, then prove that $U+W$ is a subspace of V and $\mathrm{U}+\mathrm{W}=[\mathrm{U} \cup \mathrm{W}]$.
(B) Let U and W be two subspaces of a vector space V and $\mathrm{Z}=\mathrm{U}+\mathrm{W}$. Then prove that $\mathrm{Z}=\mathrm{U} \oplus \mathrm{W}$ iff the following condition is satisfied :

Any vector $\mathrm{z} \in \mathrm{Z}$ can be expressed uniquely as the $\operatorname{sum} \mathrm{z}=\mathrm{u}+\mathrm{w} ; \mathrm{u} \in \mathrm{U}$, $\mathrm{w} \in \mathrm{W}$.
5. (A) State and prove rank-nullity theorem.
(B) Let $\mathrm{T}: \mathrm{R}^{4} \rightarrow \mathrm{R}^{3}$ be a linear map; defined by $\mathrm{Te}_{1}=(1,1,1), \mathrm{Te}_{2}=(1,-1,1)$, $\mathrm{Te}_{3}=(1,0,0), \mathrm{Te}_{4}=(1,0,1)$. Then verify that $\mathrm{r}(\mathrm{T})+\mathrm{n}(\mathrm{T})=\operatorname{dim} \mathrm{R}^{4}=4$.
6. (A) Define linear transformation. If $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear map then prove that
(i) $\mathrm{T}\left(\overline{\mathrm{o}}_{\mathrm{u}}\right)=\overline{\mathrm{o}}_{\mathrm{v}}$
(ii) $\mathrm{T}(-\mathrm{u})=-\mathrm{T}(\mathrm{u})$ and
(iii) $\mathrm{T}\left(\alpha_{1} \mathrm{u}_{1}+\alpha_{2} \mathrm{u}_{2}+\ldots . .+\alpha_{4} \mathrm{u}_{4}\right)$

$$
=\alpha_{1} \mathrm{Tu}_{1}+\alpha_{2} \mathrm{Tu}_{2}+\ldots .+\alpha_{4} \mathrm{Tu}_{4}
$$

(B) Define $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$; by the rule $\mathrm{T}\left(x_{1}, x_{2}\right)=\left(x_{1},-x_{2}\right)$. Prove that T is a linear-map. 7
7. (A) Let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a non-singular linear map. Then prove that $\mathrm{T}^{-1}: \mathrm{U} \rightarrow \mathrm{V}$ is a linear, one-one and onto.
(B) Let a linear map $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be defined by
$\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+x_{3}, 2 x_{1}+3 x_{2}-\frac{x_{3}}{2}, x_{1}+x_{2}-2 x_{3}\right)$.
If $B_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$, the standard basis and $\mathrm{B}_{2}=\{(1,1,0),(1,2,3),(-1,0,1)\}$.
Then find ($\mathrm{T}: \mathrm{B}_{1}, \mathrm{~B}_{2}$).
8. (A) Prove that the dimension of the vector space $\mu_{\mathrm{m} \times \mathrm{n}}$ is mn .
(B) \quad Let $\mathrm{A}=\left[\begin{array}{ccc}3 & 1 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right]$

Verify Rank-nullity theorem.

Section-II

9. Give the answer in brief : (Any four)
(1) Define range and Kernel of a linear map.
(2) Define non-singular linear map.
(3) Explain matrix associated with a linear map.
(4) Define subspace of a vector space.
(5) Define l.I, l.D and span of a set in a vector space.
(6) Define dimension of a vector space.
