Seat No. : _____

[Max. Marks : 50

DC-101

December-2021

B.C.A., Sem.-III

CC-202 : Data Structures (New Course)

Time : 2 Hours]

- **Instructions**: (1) All Questions of Section – I carry equal marks.
 - Attempt any two Questions in Section I. (2)
 - Question 5 in Section II is COMPULSORY, Attempt any Five. (3)

Section – I

DC-101			1 P.7	Г.О.
		(ii)	Construct B-tree of order 3 by inserting of numbers 1 to 10.	
	(B)	(i)	Draw the Expression tree of the above infix expression of Que. 2 A(ii)	10
			35, 55, 45, 5, 75, 2, 25, 85	
		(ii)	Draw the Binary Search Tree (BST) with AVL notation of the below list	
			Pre-Order : 1, 2, 4, 7, 9, 5, 3, 6, 8	
			In-Order : 7, 9, 4, 2, 5, 1, 3, 6, 8	
3.	(A)	(i)	Draw the binary tree of the below order :	10
		(ii)	What is priority queue ? Explain in brief.	
	(B)	(i)	Explain and define the types of queues.	10
		(ii)	Write Postfix notation of the infix as $(A + B^{A}D) / (E - F) + G$	
2.	(A)	(i)	Write the algorithm of the <i>Push</i> and <i>Pop</i> operations of the stack using array.	10
			11, 22, 30, 33, 40, 44, 55, 60, 66, 77, 80, 88, 99 [<i>Search Key</i> = 40]	
		(ii)	Define the trace of the binary search using below list.	
	(B)	(i)	Write an algorithm of the bubble sort.	10
		(ii)	Write an algorithm to insert a node at front in doubly linked list.	
1.	(A)	(i)	What is Abstract Data Type (ADT)? Explain with definition.	10

DC-101

P.T.O.

4. (A) Perform the DFS traversal of the following graph :

(B) (i) Find minimum span using Kruskal's scheme of the below graph

(ii) Define the adjacency List and adjacency Matrix of the above graph of Que. 4 B(i).

Section – II

5. Attempt any **Five** :

- (1) Abstract Data Type (ADT) is a collection of
 - (a) Member Data (b) Member Function
 - (c) Both (a) and (b) (d) Neither (a) and (b)
- (2) A sorted list followed by few 'Random' elements, which sorting method most suitable for the task ?
 - (a) Bubble sort (b) Selection sort
 - (c) Insertion sort (d) Quick sort
- (3) Worst case time complexity of sequential search is O(n) (True/False).
- (4) Which one is non-linear data structure ?
 - (a) Queue (b) Graph
 - (c) Array (d) Linked list
- (5) Which one is **Not** the part of the linked list?

(a)	Non-primitive	(b)	Dynamic
(c)	Flexible	(d)	Fixed size
		2	

10

10

10

- (6) If stack is empty, then the value of the stack (TOP) would be
 - (a) 0 (b) -1
 - (c) 1 (d) None of this

(7) Queue followed by the LIFO mechanism (True/False).

(8) Which one is **Not** a binary tree ?

- (a) Expression tree (b) AVL tree
- (c) B-tree (d) Binary search tree(BST)
- (9) Best case time complexity of binary search is
 - (a) $O(n \log n)$ (b) O(n)
 - (c) O(1) (d) 2^n
- (10) Depth First Search (DFS) traverse using Stack mechanism (true/false).