Seat No. : _____

MR-102

May-2022

B.C.A., Sem.-II CC-111 : Discrete Mathematics (New Course)

Time : 2 Hours]

- **Instructions :** (1) All Questions in Section I carry equal marks.
 - (2) Attempt any **Two** questions in Section -I.
 - (3) Question 5 in Section II is Compulsory.

SECTION - I

- 1. (A) Define Group. Show that the set of all positive rational numbers forms an abelian group under the composition defined by a * b = $\frac{ab}{2}$. 10
 - (B) Define an Even and Odd permutations. Check whether the following permutations are even or odd. Also find the composition of these permutations. 10

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \text{ and } g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

- 2. (A) Define Relation. Let $X = \{1, 2, 3, 4\}$ and $R = \{(x, y) / x > y\}$. Find Relation. Also give Relation matrix and draw its graph. 10
 - (B) Draw the Hasse diagram of $\langle S_{36}, D \rangle$, $\langle S_{72}, D \rangle$
- 3. (A) Define Lattice and Boolean Algebra. Show that $\langle S_{30}, D \rangle$ is a complemented lattice. Is $\langle S_{30}, D \rangle$ is a Boolean algebra or not ? Give reason. 10

1

(B) Find Sum of Products canonical form of the following Boolean expressions in three variables x₁, x₂, x₃.
10

$$x_1 + x_2, x_1 + (x_2 * x_3'), (x_1 + x_2)' + (x_1' * x_3)$$

MR-102

P.T.O.

10

[Max. Marks : 50

(A) Define Isomorphic graphs. Show that following pairs of graphs are isomorphic or 4. not.

(B) Define Strongly connected, unilaterally connected and weakly connected graphs with example. Also explain Strong component; unilateral component and weak components of graphs. 10

SECTION – II

5.	Attempt following : (Any Five)							
	(1)	In a Group (G,*); $a^*e = e^*a = $						
		(a)	a	(b)	e			
		(c)	ae	(d)	none			
	(2)	An Abelian Group is also called commutative g						
		(a)	True	(b)	False			
	(3)	A Gr	if	·				
		(a)	Its vertex set is empty					
		(b)	Its edge set is empty					
		(c)	Both vertex set and edge set	empty	7			
		(d)	None					
	(4)	In a graph sum of degrees of all the vertices is						
		(a)	2e	(b)	e ²			
		(c)	e	(d)	None			
	(5)	A transposition is a cycle of length						
		(a)	3	(b)	4			
		(c)	1	(d)	2			
	(6)	A rel	A relation is called equivalence if it is					
		(a)	reflexive	(b)	symmetric			
		(c)	transitive	(d)	All			
MR-1	102			2				

10

10

(7)	If the relation is reflexive, then its relation matrix is							
	(a)	Unit matrix	(b)	Identity matrix				
	(c)	Both (a) and (b)	(d)	None				
(8)	In a graph if the vertex is an isolated vertex then							
	(a)	It is connected with only one vertex						
	(b)	It is connected with two vertices						
	(c)	It does not connect with any vertex						
	(d)	None						
(9)	Every	Every Lattice is Boolean Algebra.						
	(a)	True	(b)	False				
(10)	In a I	In a Lattice if $a \le b \Leftrightarrow a+b =$						
	(a)	a	(b)	b				

_•