\qquad

JA-101

June-2022

B.B.A., Sem.-II

CC-112 : Business Mathematics

Time : 2 Hours]
[Max. Marks : 50

Instructions: (i) All questions in Section-I carry equal marks.
(ii) Attempt any two questions in Section-I.
(iii) Question 5 in Section-II is Compulsory.
(iv) Use of simple calculator is allowed.

1. (A) (i) Define the derivative of a function. Also state the rules of differentiation. $\mathbf{5}$
(ii) Find the derivatives of the following function with respect to x.
(a) $y=\log \left(10 x^{3}+3 x^{2}+8 x+1\right)$
(b) $y=\frac{e^{5 x}}{x+1}$
(B) (i) The total cost function of a commodity with output x units is $\mathrm{C}=x^{2}+4 x+4$. Find (a) Average cost (b) Marginal Cost
(ii) The demand law for a commodity is $x=2 \mathrm{P}-\mathrm{P}^{2}$. Calculate the elasticity of demand at $\mathrm{P}=1$.
2. (A) (i) If $y=a \cdot e^{m x}+b \cdot e^{-m x}$ prove that $\frac{d^{2} y}{d x^{2}}=m^{2} y$.
(ii) Find the maximum and minimum values of the following function:
$\mathrm{f}(x)=x^{3}-12 x^{2}-144 x+10$
(B) (i) If $\mathrm{f}(x, \mathrm{y})=x^{3}+x^{2} \mathrm{y}+x \mathrm{y}^{2}+\mathrm{y}^{3}$, find $\frac{\partial \mathrm{f}}{\partial x}, \frac{\partial^{2} \mathrm{f}}{\partial x^{2}}, \frac{\partial \mathrm{f}}{\partial \mathrm{y}}, \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y}^{2}}$.
(ii) The demand function of a commodity is $\mathrm{P}=50-\frac{5}{2} x$. Determine demand and price for maximum revenue.
3. (A) (i) Define the following terms :
(a) Square matrix
(b) Diagonal matrix
(c) Column matrix
(d) Scalar matrix
(e) Zero matrix
(ii) If $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & 2 & 3 \\ 5 & 6 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}5 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ find $A+B$ and $A-B$.
(B) (i) If $\mathrm{P}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$, and $\mathrm{Q}=\left[\begin{array}{rr}2 & -1 \\ 0 & 1\end{array}\right]$, verify that $(\mathrm{PQ})^{\prime}=\mathrm{Q}^{\prime} \mathrm{P}^{\prime}$.
(ii) If $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$, verify that $A(\operatorname{adj} A)=|A| I_{2}$.
4. (A) (i) Find the simple interest on ₹ 800 for 3 years at 5% per annum. Also find the amount.
(ii) What is an aggregate amount for ₹ 4,000 at 12% rate of Compound interest for 3 years if the interest is compounded every six months?
$\left[(1.06)^{6}=1.418519\right]$
(B) (i) Find the present value of ₹ 2,000 p.a. for 14 years at 10% p.a. rate of interest. [(1.1) $\left.)^{-14}=0.2632\right]$
(ii) If a sum of ₹ 5,000 is deposited with a Shroff at the end of every year for 10 years at 15% compound rate of interest. Find out the total amount of annuity at the end of 10 years. [(1.15) $\left.{ }^{10}=4.0456\right]$
5. Answer the following : (Any Ten)
(1) If $\mathrm{f}(x)=x^{9}-8 x^{2}+1$, then $\mathrm{f}^{\prime}(1)=$ \qquad .
(a) -7
(b) 3
(c) 7
(d) None
(2) When elasticity of demand is \qquad 1 , the demand is said to be relatively elastic.
(a) $>$
(b) $<$
(c) $=$
(d) None
(3) If $y=3^{x}$, then $\frac{d y}{d x}=$ \qquad
(a) 3^{x}
(b) $3^{x} \cdot \log _{\mathrm{e}} 3$
(c) $\log _{e} 3$
(d) None
(4) If $\mathrm{y}=\frac{1}{x^{7}}$, then $\frac{\mathrm{dy}}{\mathrm{d} x}=$ \qquad
(a) $7 x^{6}$
(b) $-7 x^{-8}$
(c) x^{-7}
(d) None
(5) If $Z=3 x+9 y$ then $\frac{\partial z}{\partial x}=$ \qquad .
(a) 3
(b) $9 y$
(c) 9
(d) None
(6) If $\mathrm{y}=x^{3}-8 x^{2}+9$ then $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}=$
(a) $3 x^{2}-18 x$
(b) $x^{3}-8 x^{2}$
(c) $6 x-16$
(d) None
(7) The budget equation $I=$ \qquad .
(a) $x \mathrm{P} x+y \mathrm{Py}$
(b) $x \mathrm{P} x$
(c) yPy
(d) None
(8) If $|\mathrm{A}|=0, \mathrm{~A}^{-1}$ is possible.
(a) True
(b) False
(9) If $\mathrm{A}=\left[\begin{array}{ccc}-5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5\end{array}\right]$, the type of matrix is
(a) Square
(b) Diagonal
(c) Scalar
(d) All
(10) If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 5\end{array}\right]$ then $\left(A^{\prime}\right)^{1}=$ \qquad
(a) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 5\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 3 & 5\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
(d) None
(11) If $x=\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]$ and $y=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$, then $x y=\square$. .
(a) $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$
(b) [3]
(c) $\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]$
(d) None
(12) A money lender is called \qquad .
(a) Creditor
(b) Debtor
(c) Amount
(d) None
(13) What is the amount of, perpetual annuity of ₹ 60 at 6%. Compound interest per year?
(a) ₹ 10
(b) ₹ 36
(c) ₹ 1000
(d) None
(14) The formula of annuity in case of Sinking fund is \qquad .
(a) $\quad \mathrm{A}=\frac{\mathrm{a}}{\mathrm{i}}\left[(1+\mathrm{i})^{\mathrm{n}}-1\right]$
(b) $\quad \mathrm{P}=\frac{\mathrm{a}}{\mathrm{i}}\left[1-\frac{1}{(1+\mathrm{i})^{\mathrm{n}}}\right]$
(c) $\left.\quad \mathrm{A}=(1+\mathrm{i}) \frac{\mathrm{a}}{\mathrm{i}}\left[(1+\mathrm{i})^{\mathrm{n}}-1\right)\right]$
(d) None
(15) An annuity in which payments of installments are made at the end of each period then it is called \qquad .
(a) ordinary annuity
(b) annuity immediate
(c) (a) \& (b)
(d) None
