Seat No. :

JA-101

June-2022

B.B.A., Sem.-II

CC-112 : Business Mathematics

Time : 2 Hours]

[Max. Marks : 50

5

5

- **Instructions :** All questions in Section-I carry equal marks. (i)
 - Attempt any two questions in Section-I. (ii)
 - (iii) Question 5 in Section-II is Compulsory.
 - Use of simple calculator is allowed. (iv)

1. (A) (i) Define the derivative of a function. Also state the rules of differentiation. 5

(a)
$$y = \log (10x^3 + 3x^2 + 8x + 1)$$

(b) $y = \frac{e^{5x}}{x+1}$

b)
$$y = \frac{1}{x+1}$$

The total cost function of a commodity with output x units is $C = x^2 + 4x + 4$. (B) (i) 5 Find (a) Average cost (b) Marginal Cost

The demand law for a commodity is $x = 2P - P^2$. Calculate the elasticity of (ii) demand at P = 1. 5

2. (A) (i) If
$$y = a \cdot e^{mx} + b \cdot e^{-mx}$$
 prove that $\frac{d^2y}{dx^2} = m^2y$. 5

Find the maximum and minimum values of the following function : (ii) $f(x) = x^3 - 12x^2 - 144x + 10$

(B) (i) If
$$f(x, y) = x^3 + x^2y + xy^2 + y^3$$
, find $\frac{\partial f}{\partial x}, \frac{\partial^2 f}{\partial x^2}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial y^2}$. 5

The demand function of a commodity is $P = 50 - \frac{5}{2}x$. Determine demand (ii) and price for maximum revenue. 5

P.T.O.

- 3. (A) (i) Define the following terms :
 - (a) Square matrix
 - (b) Diagonal matrix
 - (c) Column matrix
 - (d) Scalar matrix
 - (e) Zero matrix

(ii) If
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 2 & 3 \\ 5 & 6 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ find $A + B$ and $A - B$. 5

(B) (i) If
$$P = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, and $Q = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$, verify that $(PQ)' = Q'P'$. 5

(ii) If
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
, verify that $A(adj A) = |A| I_2$. 5

- (ii) What is an aggregate amount for ₹ 4,000 at 12% rate of Compound interest for 3 years if the interest is compounded every six months ?
 [(1.06)⁶ = 1.418519]
- (B) (i) Find the present value of ₹ 2,000 p.a. for 14 years at 10% p.a. rate of interest. $[(1.1)^{-14} = 0.2632]$
 - (ii) If a sum of ₹ 5,000 is deposited with a Shroff at the end of every year for 10 years at 15% compound rate of interest. Find out the total amount of annuity at the end of 10 years. [(1.15)¹⁰ = 4.0456]

5. Answer the following : (Any **Ten**)

(1) If
$$f(x) = x^9 - 8x^2 + 1$$
, then $f(1) =$ _____.

- (a) -7 (b) 3
- (c) 7 (d) None
- (2) When elasticity of demand is _____ 1, the demand is said to be relatively elastic.
 - (a) > (b) <
 - (c) = (d) None

JA-101

10

5

5

5

5

(3)	If $y = 3^x$, then $\frac{dy}{dx} =$		
	(a) 3^x	(b)	$3^x \cdot \log_e 3$
	(c) $\log_e 3$	(d)	None
(4)	If $y = \frac{1}{x^7}$, then $\frac{dy}{dx} =$		
	(a) $7x^6$	(b)	$-7x^{-8}$
	(c) x^{-7}	(d)	None
(5)	If $Z = 3x + 9y$ then $\frac{\partial z}{\partial x} =$		
	(a) 3	(b)	9y
	(c) 9	(d)	None
(6)	If $y = x^3 - 8x^2 + 9$ then $\frac{d^2y}{dx^2} =$	_	
	(a) $3x^2 - 18x$	(b)	$x^3 - 8x^2$
	(c) $6x - 16$	(d)	None
(7)	The budget equation I =		
	(a) $xPx + yPy$	(b)	xPx
	(c) yPy	(d)	None
(8)	If $ A = 0$, A^{-1} is possible.		
	(a) True	(b)	False
(9)	If $A = \begin{bmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{bmatrix}$, the type of mate	ix is _	
	(a) Square	(b)	Diagonal
	(c) Scalar	(d)	All

JA-101

(10)	If A	$= \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 5 \end{bmatrix} $ then (A') ¹ =		
	(a)	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 5 \end{bmatrix}$	(b)	$\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 5 \end{bmatrix}$
	(c)	$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$	(d)	None
(11)	If x =	= $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, then $x\mathbf{y} = _$		
	(a)	$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$	(b)	[3]
	(c)	[0 1 2]	(d)	None
(12)	A mo	oney lender is called		
	(a)	Creditor	(b)	Debtor
	(c)	Amount	(d)	None
(13)	What	t is the amount of, perpetual annui	tv of	₹ 60 at 6%

(13) What is the amount of, perpetual annuity of ₹ 60 at 6%. Compound interest per year ?

(a) ₹10	(b)	₹36
---------	-----	-----

(c) ₹1000 (d) None

(14) The formula of annuity in case of Sinking fund is _____.

(a) $A = \frac{a}{i} [(1+i)^n - 1]$ (b) $P = \frac{a}{i} \left[1 - \frac{1}{(1+i)^n} \right]$

(c)
$$A = (1+i) \frac{a}{i} [(1+i)^n - 1)]$$
 (d) None

- (15) An annuity in which payments of installments are made at the end of each period then it is called _____.
 - (a) ordinary annuity (b) annuity immediate
 - (c) (a) & (b) (d) None

JA-101