Seat No. :

\qquad

MK-111

May-2022
Int. M.Sc. (CA \& IT), Sem.-II
Matrix Algebra and Graph Theory
Time : 2 Hours]
[Max. Marks : 50
Instructions: (1) Use of simple calculator is allowed.
(2) In Section - I, attempt any three questions out of given five.
(3) In Section - II, attempt any eight MCQs out of given ten.

SECTION - I

1. Attempt all.
(A) State and prove hand-shaking lemma. Also, show that in any graph G there is an even number of odd vertices.
(B) Solve the following system of linear equations using Row Echelon method :

$$
\begin{array}{r}
x-y-z=7 \\
2 x+3 y-4 z=-2 \\
3 x-4 y+7 z=-5
\end{array}
$$

2. Attempt all.
(A) Find Row Echelon form of the matrix $\mathrm{A}=\left(\begin{array}{cccc}3 & -1 & 1 & 2 \\ 2 & 3 & 2 & 2 \\ 1 & -1 & 3 & 7\end{array}\right)$.
(B) Find rank of the matrix $\mathrm{A}=\left(\begin{array}{ccc}-1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & -2 & 4\end{array}\right)$.
3. Attempt all.
$2 \times 7=14$
(A) If $A=\left(\begin{array}{ccc}2 & -1 & -6 \\ -5 & 3 & -4 \\ -6 & 7 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}-5 & 3 & 2 \\ 2 & -3 & 4 \\ 6 & -7 & 2\end{array}\right)$ then show that $(A B)^{T}=B^{T} A^{T}$.
(B) Calculate inverse of a matrix (if it exists) $\mathrm{A}=\left(\begin{array}{ccc}2 & -3 & 1 \\ 1 & 1 & 2 \\ 2 & 7 & 2\end{array}\right)$.
4. Attempt all.
(A) Find characteristic polynomial of $\mathrm{A}=\left(\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 1\end{array}\right)$. Also verify Cayley-Hamilton theorem.
(B) Let $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{3}$ be a mapping defined by $\mathrm{T}(x, \mathrm{y})=(\mathrm{y}, \mathrm{y}-x, 2 x+3 \mathrm{y})$. Prove that T is linear.
5. Attempt all.
(A) Check whether $\mathrm{A}=\{(-1,2,3),(2,1,-2),(1,0,3)\}$ is a linearly independent or linearly dependent subset of R^{3} ?
(B) Apply Prims algorithm to find out minimal spanning tree. Also, calculate the minimum weight of the resultant graph.

SECTION - II
Attempt any eight.

$$
1 \times 8=8
$$

(1) A graph is called simple if \qquad .
(a) It has loop and parallel edges.
(b) It has loop but no parallel edges.
(c) It has no loop but parallel edges.
(d) It has no loop and no parallel edges.
(2) Number of edges in a complete graph is \qquad .
(a) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(b) $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
(c) $\frac{(\mathrm{n}-1)(\mathrm{n}+1)}{2}$
(d) None
(3) The solution set of the system of linear equations $x=y$ and $x=-\mathrm{y}$ contains ___ elements.
(a) 0
(b) 1
(c) 2
(d) Infinitely many
(4) If $A=\left(\begin{array}{ll}8 & 5 \\ 7 & 6\end{array}\right)$ then the value of $\operatorname{det}\left(\mathrm{A}^{121}-\mathrm{A}^{120}\right)$ is \qquad -
(a) 0
(b) 1
(c) 2
(d) $2 / 3$
(5) If A is $\mathrm{m} \times \mathrm{n}$ matrix such that both AB and BA are defined, then B is a matrix of order \qquad .
(a) $\mathrm{n} \times \mathrm{n}$
(b) $\mathrm{m} \times \mathrm{m}$
(c) $\mathrm{n} \times \mathrm{m}$
(d) None
(6) If $A=\left(\begin{array}{ccc}-1 & 3 & -6 \\ -5 & 3 & -1 \\ 8 & -9 & -7\end{array}\right)$ then trace of A is \qquad .
(a) 5
(b) 3
(c) -5
(d) None
(7) If a matrix $\mathrm{A}=\left(\begin{array}{cc}1 & -1 \\ 2 & x\end{array}\right)$ is singular (non-invertible) then the value of x is \qquad .
(a) -2
(b) 2
(c) -1
(d) None
(8) If A $=\left(\begin{array}{ccc}2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5\end{array}\right)$ is symmetric then $x=$ \qquad -
(a) 6
(b) -6
(c) 4
(d) -4
(9) If the order of A is 4×3, the order of B is 4×5 and the order of C is 7×3, then the order of a matrix $\left(A^{T} B\right)^{T} C^{T}$ is \qquad .
(a) 5×3
(b) 4×5
(c) 5×7
(d) 4×3
(10) Find the value of $x+y$ if $\left(\begin{array}{cc}2 x & 5 \\ 7 & -y\end{array}\right)=\left(\begin{array}{ll}8 & 5 \\ 7 & 3\end{array}\right)$. \qquad .
(a) 4
(b) 1
(c) -3
(d) 6

