Seat No. : _____

MK-111

May-2022

Int. M.Sc. (CA & IT), Sem.-II Matrix Algebra and Graph Theory

Time : 2 Hours]

[Max. Marks : 50

 $2 \times 7 = 14$

Instructions :	(1)	Use of simple calculator is allowed.
	(2)	In Section _ L attempt any three of

- (2) In Section I, attempt any three questions out of given five.
- (3) In Section II, attempt any eight MCQs out of given ten.

SECTION – I

1. Attempt all.

- (A) State and prove hand-shaking lemma. Also, show that in any graph G there is an even number of odd vertices.
- (B) Solve the following system of linear equations using Row Echelon method :

$$x - y - z = 7$$
$$2x + 3y - 4z = -2$$
$$3x - 4y + 7z = -5$$

- 2. Attempt all.
 - (A) Find Row Echelon form of the matrix $A = \begin{pmatrix} 3 & -1 & 1 & 2 \\ 2 & 3 & 2 & 2 \\ 1 & -1 & 3 & 7 \end{pmatrix}$.

(B) Find rank of the matrix $A = \begin{pmatrix} -1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & -2 & 4 \end{pmatrix}$.

3. Attempt all.

 $2 \times 7 = 14$

 $2 \times 7 = 14$

(A) If
$$A = \begin{pmatrix} 2 & -1 & -6 \\ -5 & 3 & -4 \\ -6 & 7 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} -5 & 3 & 2 \\ 2 & -3 & 4 \\ 6 & -7 & 2 \end{pmatrix}$ then show that $(AB)^{T} = B^{T}A^{T}$.
(B) Calculate inverse of a matrix (if it exists) $A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & 1 & 2 \\ 2 & 7 & 2 \end{pmatrix}$.

MK-111

P.T.O.

4. Attempt all.

- (A) Find characteristic polynomial of A = $\begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 1 \end{pmatrix}$. Also verify Cayley-Hamilton theorem.
- (B) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a mapping defined by T(x, y) = (y, y x, 2x + 3y). Prove that T is linear.
- 5. Attempt all.

$2 \times 7 = 14$

- (A) Check whether A = $\{(-1, 2, 3), (2, 1, -2), (1, 0, 3)\}$ is a linearly independent or linearly dependent subset of R³?
- (B) Apply Prims algorithm to find out minimal spanning tree. Also, calculate the minimum weight of the resultant graph.

SECTION – II

.

Attempt any eight.

- (1) A graph is called simple if _____
 - (a) It has loop and parallel edges.
 - (b) It has loop but no parallel edges.
 - (c) It has no loop but parallel edges.
 - (d) It has no loop and no parallel edges.

(2) Number of edges in a complete graph is _____.

(a)
$$\frac{n(n+1)}{2}$$
 (b) $\frac{n(n-1)}{2}$
(c) $\frac{(n-1)(n+1)}{2}$ (d) None

(3) The solution set of the system of linear equations x = y and x = -y contains ______ elements.

(a) 0 (b)]	l
----------	------------	---

(c) 2 (d) Infinitely many

 $1 \times 8 = 8$

(4) If
$$A = \begin{pmatrix} 8 & 5 \\ 7 & 6 \end{pmatrix}$$
 then the value of det $(A^{121} - A^{120})$ is ______.
(a) 0 (b) 1
(c) 2 (d) 2/3
(5) If A is m × n matrix such that both AB and BA are defined, then B is a matrix of order ______.
(a) $n \times n$ (b) $m \times m$
(c) $n \times m$ (d) None
(6) If $A = \begin{pmatrix} -1 & 3 & -6 \\ -5 & 3 & -1 \\ 8 & -9 & -7 \end{pmatrix}$ then trace of A is ______.
(a) 5 (b) 3
(c) -5 (d) None
(7) If a matrix $A = \begin{pmatrix} 1 & -1 \\ 2 & x \end{pmatrix}$ is singular (non-invertible) then the value of x is _____.
(a) -2 (b) 2
(c) -1 (d) None
(8) If $A = \begin{pmatrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \end{pmatrix}$ is symmetric then $x =$ ____.
(a) 6 (b) -6
(c) 4 (d) -4
(9) If the order of A is 4×3 , the order of B is 4×5 and the order of C is 7×3 , then the order of a matrix $(A^TB)^TC^T$ is ____.
(a) 5×3 (b) 4×5
(c) 5×7 (d) 4×3
(10) Find the value of $x + y$ if $\begin{pmatrix} 2x & 5 \\ 7 & -y \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ 7 & 3 \end{pmatrix}$ ____.
(a) 4 (b) 1
(c) -3 (d) 6

MK-111

MK-111