Seat No. :

\qquad

MJ-106

May-2022

B.Sc., Sem.-V
 CC-303 : Physics

Time : 2 Hours]

[Max. Marks : 50
સૂચનાઓ : (1) Section-Iમાં બધાં જ પ્રશ્નોના ગુણ સમાન છે.
(2) Section-Iમાંથી કોઈ゙પણ ત્રણ પ્રશ્નોના જવાબ લખો.
(3) Section-IIનો પ્રશ્ન નંબ૨-9 ફ૨જીયાત છે.

Section - I

1. (A) અવાહક માધ્યમ માટે સમતલ તરંગનું ક્ષેત્ર સમીકરણા લખો અને તેનો ઉેકેલ મેળવો.
(B) પોઈન્ટીંગના પ્રમેયનું વિધાન આપો અને સાબિત કરો.
2. (A) વિદ્યુત ચુંબકીયક્ષેત્ર સ્થિતિમાનના સમીક૨ણની વિસ્તૃત ચર્ચા કરો અને લોરેન્ટઝ ગોઝ શ૨ત તા૨વો.
(B) સાબિત કરો કે પ્રતિ કદ વિખે૨ણ પામતી ઉર્જા $\frac{\mathrm{dU}}{\mathrm{dT}}$ એ હીસ્ટરીસીસ લૂપ દ્વારા ઘેરાતા વિભાગના ક્ષેત્રફળના સમપ્રમાણમાં હોય છે.
3. (A) સાબિત કરો કે ડાયપોલ માટે વિકેરિત પાવ૨ એ P^{2} / λ^{4} ગુણોત્તરના સમપ્રમાણમાં હોય છે.
(B) રીટાર્ડેડ સ્થિતિમાનની વિભાવનાને સમજાવો અને દર્શાવો કे ϕ અને A બંને વિસમાંગ સમીકરણોને સંતોષે છે.
4. (A) સાબિત કરો કે બે ગોળાઓ વચ્ચે દોલન કરતો વિદ્યુતભાર એ દોલિત ડાયપોલ મોમેન્ટને સમતુલ્ય છे.
(B) ઈૅલેક્ટ્રોનની યાદચ્છિક ગતિ દ્વા૨ા ઉત્સર્જાતા વિકિરણની ચર્ચા કરો અને લીનાર્ડ-વીચાર્ટ સ્થિતિમાન તા૨વો.
5. (A) જરૂી ગાણિતિિક પ્રક્રિયા દ્વા૨ા α-ક્ષય વિરોધાભાસની ચર્ચા કરો.
(B) α-કણ વર્ણપપટા સૂક્ષ્મ બંધારણની વિસ્તૃત ચર્ચા કરો.

દર્શાવો કે ${ }_{92} \mathrm{U}^{238}$ ન્યુક્લિયસ એ α-ક્ષય સામે અસ્થિર છે.
$\left(\mathrm{M}_{\mathrm{U}}=238.048608 \mathrm{u}, \mathrm{M}_{\mathrm{Th}}=232.03717 \mathrm{u}, \mathrm{M}_{\alpha}=4.0260 \mathrm{u}\right)$.
6. (A) β-क्ષય માટે અવસ્થા ઘનતા અવયવ $\rho(E)$ નું સૂત્ર તા૨વો.
(B) β-क्षય દ૨મ્યાન ઉત્સર્જાતા ન્ય્ટ્રીનોની પ૨ખ માટેના કોવાન અને ૨ીએન્સના પ્રયોગની ચર્ચા કરો.
7. (A) γ-સંક્રમણ માટે મલ્ટી પોલારીટી વિશે નોંધ લબો. γ કિરણોના આંતરિક ३પાંત૨ણ વિશે નોંધ લખો. 7
(B) ન્યુક્લિઅ૨ આઈீસોમરીઝમ પ૨ નોંધ લખો. ${ }^{203} \mathrm{Hg}$
${ }^{203} \mathrm{Hg}$ (મર્ક્યુરી) પ૨માણુમાંથી β કણોના ક્ષય દ્વારા ${ }^{203} \mathrm{Tl}$ પ૨માણુ, ઉछ્ભવે છે જે દ૨મ્યાન 266.3, 264.2, 263.6 અને 193.3 keV ઉર્જાવાળા ચાર આંતરિક ३પાંતરિત ઈંલેક્ટ્રોન ઉત્સર્જાય છ. ${ }^{203} J l$ પ૨માણુુની $\mathrm{K}, \mathrm{L}_{\mathrm{I}}, \mathrm{L}_{\mathrm{II}}$ અને $\mathrm{L}_{\mathrm{III}}$ પैકીની કઈ શેલને અનુરૂપ આ ઉત્સર્જન હશે ? આ શેલમાં દરેક ઈீલેક્ર્રોનની બંધન ઉર્જા અનુક્રમે 87.7, 15.4, 14.8 અને 12.7 keV છે. સાથે ઉત્સર્જાતા γ-કિરણોની ઉર્જા શોધો.
8. (A) બંધન ઉર્જા વક્ર દોશો અને બંધન ઉર્જા વક્રના તારણો દર્શાવો. 7
(B) odd A આઈઈોબાર ન્યુક્લિયસના દ્રવ્યમાન પ૨વલયની ચર્ચા કરો.

Section - II

9. ગમે તે આઠ પ્રશ્નોના જવાબ આપો :
(1) ₹ીટેન્ટીવીટી એટલે શું ?
(2) મેક્સવેલનું ત્રીજું સમીક૨ણ લખો.
(3) સ્કીન અસર એટલે શું ?
(4) ઉ઼ર્જા ફલકસની વ્યાખ્યા આપો.
(5) રીટોડડડ પોટેન્શિયલની વ્યાખ્યા આપો.
(6) ડાયપોલની વ્યાખ્યા આપો.
(7) વિકિરણ અવરોધનો અર્થ શું થાય ?
(8) વિકિરણ ક્ષેત્ર (ઝોન)ની વ્યાખ્યા આપો.
(9) α-ક્ષય વિશોધાભાસની વ્યાખ્યા આપો.
(10) α-કણ વર્ણપપનું સૂક્ષ્મ બંધારણ શું દર્શાવે છે ?
(11) β-કણની સાથે કયો કણ ઉત્સર્જન પામે છે ?
(12) β^{-}ક્ષય માટે ગેમોવ અને ટેલરનો પસંદગીનો નિયમ દર્શાવો.
(13) આંતરિક રૂપાંત૨ણની વ્યાળ્યા આપો.
(14) ન્યુક્લિય૨ આઈસોમરીઝમની વ્યાખ્યા આપો.
(15) દ્રવ्यમાન સૂત્રમાં આવતુંકુલંબ ઉર્જા પદ શું દર્શાવે છે ?
(16) ન્યૂટ્રોનની અસંમિતતાના કારણે દ્રવ્યમાન સૂત્રમાં કયું ઉર્જા પદ આવે છે ?

Seat No. :

\qquad

MJ-106

May-2022

B.Sc., Sem.-V
 CC-303 : Physics

Time : 2 Hours]

[Max. Marks : 50

Instructions : (1) All questions in Section - I carry equal marks.
(2) Attempt any Three questions in Section - I.
(3) Question 9 in Section - II is COMPULSORY.

SECTION - I

1. (A) Write plane wave field equation of a non-conducting medium and give its solution.
(B) State and prove Poynting's theorem.
2. (A) Discuss electromagnetic field potential equation in detail and obtain Lorentz gauge condition.
(B) Show that the energy dissipated per unit volume $\frac{\mathrm{dU}}{\mathrm{d} \tau}$ in each cycle is proportional to the area enclosed by the hysteresis loop.
3. (A) Prove that for dipole radiated power is proportional to the ratio $\mathrm{P}^{2} / \lambda^{4}$.
(B) Explain concept of retarded potential and show that both ϕ and A satisfies inhomogeneous equations.
4. (A) Prove that charge oscillating between two spheres is equivalent to an oscillating dipole moment.
(B) Discuss radiation from an electron in arbitrary motion and obtain LieneardWiechert potential.
5. (A) With necessary mathematical treatment, discuss the α decay paradox.
(B) Discuss about fine structure of α ray spectrum in detail.

Show that ${ }_{92} \mathrm{U}^{238}$ is unable against α decay (Given : $\mathrm{M}_{\mathrm{U}}=238.048608 \mathrm{u}$, $\mathrm{M}_{\mathrm{Th}}=232.03717 \mathrm{u}, \mathrm{M}_{\alpha}=4.0260 \mathrm{u}$).
6. (A) Derive an expression of Factor for Density of States $\rho(E)$ (Number of available energy states per unit energy range) for β decay.
(B) Discuss Cowan and Reines experiment to detect neutrino during β decay.
7. (A) Write a note on Multi polarity in γ transitions. Write a note on Internal Conversion of γ rays.
(B) Write a note on Nuclear Isomerism.
${ }^{203} \mathrm{Tl}$ (Thallium) atoms resulting from β decay ${ }^{203} \mathrm{Hg}$ (Mercury) atoms emit 4 groups of internal conversion electrons with kinetic energies of 266.3, 264.2, 263.6 and 193.3 keV . To what shell of $T l$ atom $\mathrm{K}, \mathrm{L}_{\mathrm{I}}, \mathrm{L}_{\mathrm{II}}, \mathrm{L}_{\mathrm{III}}$ does each group correspond? The electron binding energies in the shells are 87.7, 15.4, 14.8 and 12.7 keV respectively. Calculate the energies of γ-quanta concurrent with that decay.
8. (A) Draw binding energy curve and state the conclusions drawn from binding energy curve.
(B) Discuss the mass parabola of odd A isobars (nuclei) in detail.

SECTION - II

9. Attempt any eight :
(1) What is retentivity?
(2) Write Maxwell's third equation.
(3) What is skin effect?
(4) Define energy flux.
(5) Define retarded potential.
(6) Define dipole.
(7) What do you mean by Radiation resistance ?
(8) Define radiation zone.
(9) Define α-decay paradox.
(10) What does the fine structure of α-Spectrum tell us ?
(11) Which particle is emitted along with β particle?
(12) State Gamow and Teller selection rule for β^{-}decay.
(13) Define internal conversion.
(14) Define nuclear isomerism.
(15) What does coulomb energy term in mass formula represent?
(16) Which energy term arises in mass formula due to the neutron asymmetry?
