Seat No. :

\qquad

MJ-107

May-2022

B.Sc., Sem.-V
 CC-303 : Mathematics
 (Complex Variables and Fourier Series)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Attempt any three questions from Q. 1 to Q. 8.
(2) Q. 9 is Compulsory.
(3) Notations are usual everywhere.
(4) Figures to the right indicate marks of the question/sub question.

1. (A) State the Triangle inequality in C and prove that
(i) $\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|$
(ii) $\overline{\left(\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}\right)}=\frac{\overline{\mathrm{z}}_{1}}{\overline{\mathrm{z}}_{2}}, \mathrm{z}_{2} \neq 0$
(B) In the system C of complex numbers obtain the fifth root of -1 and seventh root of 1 .
2. (A) Define convergence of series in C. Suppose that $z_{n}=a_{n}+i b_{n} ; \quad n=1,2,3 \ldots$ and $S=A+i B$ then prove that $\sum_{n=1}^{\infty} z_{n}=S$ if and only if $\sum_{n=1}^{\infty} a_{n}=A$ and $\sum_{n=1}^{\infty} b_{n}=B$
(B) Show that $\operatorname{ch}^{2} \mathrm{z}-\operatorname{sh}^{2} \mathrm{z}=1$. Identify the curve $|\mathrm{z}+1|=|\mathrm{z}-1|$ in C. Also, obtain $\operatorname{Re}\left(|\sin z|^{2}\right)$
3. (A) Define : Analytic function. If a function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D , then derive the Cauchy-Riemann Partial differential equations.
(B) Let $f(\mathrm{z})=\frac{(\overline{\mathrm{z}})^{2}}{z} ; \mathrm{z} \neq 0$ and $f(\mathrm{z})=0 ; \mathrm{z}=0$. Then show that f is not analytic at $z=0$ even if Cauchy-Riemann equation are verified at $z=0$.
4. (A) Define : Harmonic function. If a function $f(\mathrm{z})=u(x, \mathrm{y})+\mathrm{i} v(x, \mathrm{y})$ is analytic in the domain D , then prove that the component functions $u(x, \mathrm{y})$ and $v(x, \mathrm{y})$ are harmonic. Find the harmonic conjugate of the function $\mathrm{x}^{2}-\mathrm{y}^{2}$ and corresponding analytic function in terms of Z .
(B) If $f(\mathrm{z})=u(r, \theta)+\mathrm{i} v(r, \theta)$ is analytic in the domain D , then prove that $\mathrm{r}^{2} \mathrm{u}_{\mathrm{rr}}+\mathrm{ru}_{\mathrm{r}}+\mathrm{u}_{\theta \theta}=0$. Verify the Cauchy-Riemann equations in polar form for the function $f(\mathrm{z})=\log \mathrm{z}$.
5. (A) Define conformal mapping and prove that an analytic function $f(z)$ preserves conformality.
(B) Find the image of a strip $1 \leq y \leq 2, x$ is a real number, under the mapping $w=\frac{1}{z}, z \neq 0$.
6. (A) Find the image of the curve $|z-i|<2$ under the Bilinear Transformation $w=\frac{i z+1}{z+2 i}$.
(B) Obtain the image of the curve $\mathrm{y}=x-1$ and $\mathrm{y}=0$ under the mapping $w=\frac{1}{z}, z \neq 0$ Also, examine the conformality of the given mapping at the point $\mathrm{z}=-1$.
7. (A) If the series $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ converges uniformly to f on $[-\pi, \pi]$, then prove that it is the Fourier series for f on $[-\pi, \pi]$.
(B) Find a sine series for the function $f(x)=x$, for $0<x<\frac{\pi}{2}$

$$
\text { and } f(x)=0, \quad \text { for } \quad \frac{\pi}{2}<x<\pi .
$$

8. (A) If $f(x)$ is Riemann integrable in $(-\pi, \pi)$, then the series $\sum_{n=1}^{\infty}\left(a_{n}{ }^{2}+b_{n}{ }^{2}\right)$ converges where a_{n} and b_{n} are the Fourier coefficients of $f(x)$.
(B) Find the Fourier series expansion of the function $f(x)=x^{2}$, in $0<x<2 \pi$.
9. Attempt any Four of the followings in short: $(\mathrm{z}=x+\mathrm{iy} \in \mathrm{C}$, every where $)$
(i) State the $\operatorname{Re}\left(\mathrm{e}^{\mathrm{z}}\right)$ and $\operatorname{Im}\left(\mathrm{z}^{2}\right)$.
(ii) Is the curve $\mathrm{u}(x, \mathrm{y})=\mathrm{e}^{x} \cos \mathrm{y}$ Harmonic ? Justify.
(iii) Simplify the expression: $|\mathrm{z}-\mathrm{l}|=|\mathrm{z}-\mathrm{i}|$?
(iv) Find the singular points of a mapping $f(z)=\frac{3 z+1}{(z-i)\left(z^{2}-8 z+15\right)}$.
(v) Is the function e^{z} Entire? Explain.
(vi) Obtain $\int_{-\pi}^{\pi} \cos \mathrm{n} x \sin \mathrm{~m} x \mathrm{~d} x$ for all $\mathrm{m}, \mathrm{n}=0,1,2, \ldots$
