\qquad

B. Com Sem.-5 Examination
 Statistics
 CE-301(B)
 Advanced Statistics -Paper-VII
 May 2022

[Max. Marks: 50
Time: 2-00 Hours
સૂ凶નાા: (૧) સાદા કેલક્યુલેટરનો ઉ૫યોગ કરી શકાશો.

SECTION-A

1 (a) જથ્થા નિયત્રણમાં આવતt જુદા જુદા ખર્ચની ચચ્યા કરો. અછત t હોય અને માંગનો દર સચલ 20 હોય ત્યારે આર્થિક વરદી જથ્થો મ્પળવવાનું સૂત્ર જણાવો,
(b) ओક વસ્તુની સરેરાશ માસિક માંગ 8000 એકમોની છે. निભાવ ખર્ચ ઓકમદીઠ ઠिंમતના 12% वર્ષ
 દીઠ હોય અને જો 20,000 કे તેથી વધુ 引કમોની ખરીદી પર 10% કિંમતમાં ઘટાડો થતો હોય તો 10% ઘટાડો લેવો યોગ્ય ગણાય?

2 (a) કતાર (queue)નો પ્રશ્ન સમજાવો.(M/M/1 : FIFO/N) કતાર મોડેલ સમજાવો.
(b) જો આગમનનો દર 8 પ્રતિ કલાક અને સેવાનો દર 12 પ્રતિ કલાક હોય તો,
(i) કતાર માળખું व્યસ્ત ન હોય તેની સંભાવના
(ii) કતારમાં રહેલા ગ્રાહકોની સેેરાશ સંખ્યા શોધો (કતાર માળખામાં વધુમાં વધુ 4 ગ્રાહકો આવી शदे छे.)

3 (a) ક્રમતાની સમસ્યા સમજાવો. 3 મશીન અને n કાર્યોની ક્રમતાની સમસ્યાના ઈવ્ટત્તમ ઉકેલની પ્રક્રિયા સમજાવો.
(b) નીચેના કાર્યો કરવવા માટે ઈષ્ટત્તમ ક્ર્મ અને ત્રણ મશીનનો ફાજલ સમય શોધો.

કાર्यो	1	2	3	4	5	6	7	8
मशीri-1	32	34	36	33	34	31	38	37
मशी--2	27	29	27	26	29	25	26	24
मशी--3	34	40	37	39	36	31	37	38

4 (a) વાહનव्यवહારની સમસ્યા સમજાવો. તેના ઉકકલ માટેની ન્યूન્તમ ખર્ચની રીત અને વોગેલની રીત 20 qựવो.
(b) નીચેની વાહનવ્યવહારની સમસ્યાનો ઈષ્ટત્તમ ઉજ઼લ મહત્તમ નફા માટે શોધો.

પ્રપપ્તિ સ્થાન

ઉत्पति स्थानi	1	2	3	4	पूरवठो
1	5	8	7	3	100
2	4	2	3	9	200
3	3	6	5	3	300
4	1	5	4	6	400
सांग	150	150	250	250	

1205 N272-2

SECTION-B (ફ々જિયાત)

5 નીચેના પ્રથ્નોના જવાબ આાપો (કોઈપણા પાંચ) :
(1) જથ્થા નિયંત્રણનો અર્થ સમજાવો.
(2) સર્યાEિત ઉત્પાદન અને અછત ના હોય તેવા જશ્થા નિયંત્રણ ઑૉેલ માટે EOQrું સૂત્ર જણાવો.
(3) આર્થिક વરEી જથ્થો (EOQ) મૉડેલની ધારણાસઓ લખો.
(4) ટ્રાફિકની તીવ્રતા કતારના સિદ્ધાંતના સંદર્ભે સમજાવો.
(5) (M/M/1 : FIFO/N) કતાર મૉડેલ માટે, માળખામાં ઓક ગ્રાહક હોય તેનું સંભાવનાનું સૂત લખો.
(6) વાહનવ્યવહારની સમસ્યાનો સૌથી શ્રેષ્ઠ પ્રાથમિક ઉફેલ આપપે તે રીતનું નામ જણાવો.
(7) અસંતુલિત (Unbalanced) વાહનવ્યવહારની સમસ્યા એટલે શું?
(8) ક્રમની સમસ્યાના બે ઉદાહરણ આપો.
(9) ઓક વસ્તુની વાર્ષિક માંગ 4000 ઓકમોની $છ$ વસ્તુનો નિભાવ ખર્ચ એકમદીઠ ર. 150 ひને દરેક ઓરર મૂકવાનો ખર્ચ ३. 550 હોય તો આર્થिક વરEી જશ્થો શોધો.
(10) વાહનવ્યવહારની સમસ્યામાં વિકૃતતા એટલે શું?

ENGLISH VERSION

Section-A

Attempt any two questions from following questions:
1 (a) Discuss the different types of cost involved in inventory control. State the EOQ formula under without shortages and demand rate is constsnt.
(b) Average monthly demand for a particular item is 8000 units Inventory carrying cost per unit per year is 12% of the cost of the units and ordering cost is Rs. 200 per order. The price quoted by the supplier is Rs. 500 per unit. However the supplier is willing to give discount of 10% for the order of 20,000 units or more. Is it worth while to avil of discount offer?

2 (a) Explain the queuing problem. Explain (M/M/1:FIFO/N) model.
(b) If the arrival rate is 8 per hour and service rale is 12 per hour then calculate :
(i) The probability that the system is idie.
(ii) Average number of customer in the queue, on the assumption that capacity of the system is limited to 4 customers only.

3 (a) Explain the sequence problem. Explain the procedure for determining an optimum sequence for processing n items on three machines
(b) From the following table. Find the optimal sequence of jobs to be processed and the minimum elapsed time for 3 machines.

Job	1	2	3	4	5	6	7	8
Machine-1	32	34	36	33	34	31	38	37
Machine-2	27	29	27	26	29	25	26	24
Machine-3	34	40	37	39	36	31	37	38

4 (a) Explain Transportation problem and write steps of least cost method and Vogels
Approximation method to solve it.

1205N272-3

(b) Obtain optimum solution of the following transportation problem for maximization.

Destination					
Origins	1	2	3	4	Supply
1	5	8	7	3	100
2	4	2	3	9	200
3	3	6	5	3	300
4	1	5	4	6	400
Demand	150	150	250	250	

Section-B (Compulsory)

5 Answer the following questions (any five):
(1) Explain the meaning of inventory control.
(2) State the formula of EOQ for the inventory model having finite production and no shortages.
(3) Write the assumptions of EOQ Model.
(4) In context of queuing theory. Explain utilization factor.
(5) Write the formula of probability of one customers in the system for (M/M/1: FIFO/N) queue model.
(6) Name the method which gives the best initial solution of a transportation problem.
(7) What is unbalanced Transportation problem.
(8) Give two illustration of sequencing problem.
(9) A particular item has demand of 4000 units per year. The holding cost per unit is Rs. 150 and the ordering cost is Rs. 550 per order. Determine the economic lot size (EOQ).
(10) What is degeneracy in Transportation problem?

