Seat No. : \qquad

JJ-102

June-2022

B.Com., Sem.-II

CE-102 (B) : Statistics
(Operation Research)
Time : 2 Hours]
[Max. Marks : 50

સૂચનાઓ : (1) વિભાગ-Iના બધા પ્રશ્નોના ગુણભભા૨ સમાન છે.
(2) વિભાગ-Iમાં ગમે તે બે પ્રશ્નોના જવાબ આપો.
(3) વિભાગ-IIનો પ્રશ્ન નંબ૨-5 ફ૨જીયાત છે.
(4) ગણનયંત્રનો ઉપયોગ કરી શકાય.
વિભાગ - I

1. (A) સુરેખ આયોજનની વ્યાખ્યા આપો અને સુરેખ આયોજનના પ્રશ્નોના ઉેકેલ મેળવવાની આલેખની રીત સમજાવો.
(B) वિધેય $z=4 x+4 y$ ને મહત્તમ બનાવે તેવી x અને yની કિંમતો શોધો કે જેથી નીચેના પ્રતિબંધો સંતોષાય:
$x+2 \mathrm{y} \leq 10 ; 6 x+6 \mathrm{y} \leq 36 ; x \leq 6, x ; y \geq 0$
2. (A) વૉગેલની ૨ીતે નીચેની સમસ્યાનો મૂળભૂત ઉેકે મેળવો :

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	પुरवઠो
\mathbf{I}	3	8	3	2	8
II	1	3	4	6	7
III	4	2	5	7	15
भાંગ	6	10	9	5	30

(B) અસમતોલ વાહન વ્યવહારની સમસ્યા વર્ણાવો. વાયવ્ય ખૂણુની રીતથી વાહન વ્યવહારની નીચેની સમસ્યાનો મૂળભૂત શક્ય ઉેકેલ મેળવો :

પ્રાપ્તિ સ્થાનો

ઉદ્लवस्थाનો	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	પुरवઠो
$\mathbf{O}_{\mathbf{1}}$	5	4	7	6	3	7
$\mathbf{O}_{\mathbf{2}}$	3	5	3	2	6	12
$\mathbf{O}_{\mathbf{3}}$	3	4	7	5	5	16
જ३રિયાતो	8	5	10	8	4	35

3. (A) નિયુક્તિની સમસ્યા સમજાવો. એક ડિપાર્ટમેન્ટમાં પાંચ કર્મચારીઓને પાંચ કાર્ય ક૨વાનાં છે. દરેકને દરેક કાર્ય કરવા માટે લાગતો સમય નીચેના શ્રેણિકમાં આપેલ છે. દરેક કર્મચારીને કાર્ય કેવી રીતે આપવામાં આવે કે જેથી કુલ માનવકલાકો ન્યૂનતમ થાય ?

કર્મચારીઓ

કાર્ય | | I | II | III | IV | V |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{A} | 10 | 5 | 13 | 15 | 16 |
| \mathbf{B} | 3 | 9 | 18 | 13 | 6 |
| \mathbf{C} | 10 | 7 | 2 | 2 | 2 |
| \mathbf{D} | 7 | 11 | 9 | 7 | 12 |
| \mathbf{E} | 7 | 9 | 10 | 4 | 12 |

(B) ફેરબદલીની સમસ્યા સમજાવો. એક યંત્રની કિંમત ₹ 6,100 છે અને તેની પુન:વેચાણ કિંમત ₹ 100 છે. તેનો નિભાવ ખર્ચ નીચે પ્રમાણે અંદાજવામાં આવ્યો છે :

વર્ષ	1	2	3	4	5	6	7	8
निलાવ ખર્ચ	100	250	400	600	900	1200	1600	2000

મશીન ક્યારે બદલવું લાભદાયક થાય ?
4. (A) એક યોજના છ પ્રવૃત્તિઓની બનેલી છે. આ દરેક પ્રવૃત્તિના સમયનો અંદાજ નીચે મુજબ છે. અપેક્ષિત સમય શોધી પર્ટ નકશો તૈયા૨ કફો અને કટોકટી પૂર્ણ માર્ગ શોધો :

प्रवृत्ति	भार्ग	આશાવાદી સમય $=\mathbf{t}_{\mathbf{o}}$	નિરશાવાદી સમય = t_{p}	સૌથી વધુ સંભવિત સમય = \mathbf{t}_{m}
a	1-2	7	12	11
b	1-3	7	10	9
c	2-4	8	13	12
d	3-4	10	12	11
e	3-5	10	14	12
f	4-5	8	10	9

(B) નીચેની યોજના માટે કટોકટી પૂર્શ્ર માર્ગ શોધો. દરેક પ્રવૃત્તિ માટે EFT, LFT અને ફાજલ સમય શोધો :

प्रवृत्ति	$1-2$	$1-3$	$2-3$	$2-4$	$3-4$	$4-5$
सમय	25	30	15	17	10	15

વિભાગ-II

5. કોઈ゙પણ પાંચના જવાબ આપો :
(1) કુલ ફાજલ સમય = \qquad
(a) EFT - LFT
(b) EFT - EST
(c) LFT - EFT
(d) એકપણ નહિ
(2) કાલ્પનિક પ્રવૃન્તિને પર્ટ નકશામાં \qquad દ્વારા દર્શાવાય છે.
(a) ત્રુટક તી૨ $(\cdots \cdots \longrightarrow)$
(b) ત્રુટક રેખા (......)
(c) સળંગ તી૨ (\longrightarrow)
(d) એકપણ નહિ
(3) 4 ઉત્પત્તિસ્થાન અને 4 પ્રાપ્તિસ્થાનવાળા, 4×4 વાહન-વ્યવહારની સમસ્યામાં કુલ કેટલા પ્રતિબંધો બનાવી શકાય ?
(a) 7
(b) 8
(c) 9
(d) એકપણ નહિ
(4) વાહન વ્યવહારની સમસ્યામાં \qquad ની સંખ્યા અને \qquad ની સંખ્યા હંમેશા સમાન જ હોય छे ?
(a) સ્તંભો, હારો
(b) પ્રાપ્તિસ્થાનો, ઉત્પત્તિસ્થાનો
(c) પુરવઠા એકમો, જરૂરિયાતના એકમો
(d) એકપણ નહિ
(5) નિયુક્તિના સમસ્યાના ઉેકેલની હંગેરિયન પદ્ધતિથી સમસ્યાનો \qquad ઉૅકેલ મળે છે.
(a) મૂળભૂત
(b) ઈષ્ટતમ
(c) અનれણ
(d) એકપણ નહિ
(6) કાર્ય વહેંચણીની સમસ્યામાં હાર અને સ્તંભની સંખ્યા હંમેશા
(a) અસમાન
(b) અસમાન અથવા સમાન
(c) સમાન
(d) એકપણ નહિ
(7) કાર્ય વહેંચણીના પ્રશ્નમાં જો બધા જે હાર અને સ્તંભમાં બે અથવા વધુ શૂન્ય હોય, તો આપેલી સમસ્યા માટે \qquad શક્ય છે.
(a) પ્રતિબંધિત ઉૈકેલ
(b) એક ઉેકેલ
(c) એક કરતાં વધુ ઈૅષ્ટ ઉકેલ
(d) એકપણ નહિ
(8) ફે૨બદલી માટેનું શ્રેષ્ઠ વર્ષ એ છે કે જ્યારે \qquad ન્યૂનૂતમ થાય.
(a) કુલ ખર્ચ
(b) નિભાવ ખર્ચ
(c) સરેરાશ કુલ ખર્ચ
(d) એકપણ નહિ
(9) $x \leq 6$ નો આલેખ \qquad રેખા અને તેની \qquad બાજુ હોય છે.
(a) સમક્ષિતિજ, જમણી
(b) શિરોલંબ, જમણી
(c) સમક્ષિતિજ, ડાબી
(d) શિરોલંબ, ડાબી
(10) સુરેખ આયોજનની સમસ્યામાં નિર્ણાયત્મક ચલોની અસમતાઓને \qquad કહેવાય છે.
(a) હેતુલક્ષી વિધેય
(b) પ્રતિબંધો
(c) મૂળભૂત ઉૈકે
(d) એકપણ નહિ

Seat No. :

\qquad

JJ-102

June-2022
B.Com., Sem.-II

CE-102 (B) : Statistics
(Operation Research)
Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) All questions in Section-I carry equal marks.
(2) Attempt any two questions in Section-I.
(3) Question No. 5 in Section-II is compulsory.
(4) Use of calculator is permitted.

SECTION - I

1. (A) What is linear programming ? Explain graphical method of solving linear programming problem.
(B) Find x and y such that $\mathrm{z}=4 x+4 \mathrm{y}$ is maximum under the following constraints: $\mathbf{1 0}$
$x+2 \mathrm{y} \leq 10,6 x+6 \mathrm{y} \leq 36 ; x \leq 6, x ; \mathrm{y} \geq 0$
2. (A) Obtain basic solution of the following problem by Vogel's method :

	A	B	C	D	Supply
I	3	8	3	2	8
II	1	3	4	6	7
III	4	2	5	7	15
Demand	6	10	9	5	30

(B) Explain unbalanced transportation problem. Derive basic feasible solution of the following transportation problem by North - West corner rule.

Destinations

Origins	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{5}}$	Supply
$\mathbf{O}_{\mathbf{1}}$	5	4	7	6	3	7
$\mathbf{O}_{\mathbf{2}}$	3	5	3	2	6	12
$\mathbf{O}_{\mathbf{3}}$	3	4	7	5	5	16
Requirements	8	5	10	8	4	35

3. (A) What is assignment problem ? Explain. A department have five employees and five jobs are to be performed. The time each man will take to perform each job is given in the matrix below. How should the jobs be allocated one per employee, so as to minimize total man hours?

Employees

(B) Explain Replacement Problem. A machine costs ₹ 6,100 and its resale value is $₹ 100$. Its maintenance cost is estimated as follows :

Year	1	2	3	4	5	6	7	8
Maintenance cost	100	250	400	600	900	1200	1600	2000

When should the machine be replaced to be profitable?
4. (A) A project is divided into six activities. The estimated time for each activity is given below. Draw PERT diagram after finding out expected time and find critical path :

Activity	Sequence	Optimistic Time $=\mathbf{t}_{\mathbf{0}}$	Pessimistic ${\text { Time }=\mathbf{t}_{\mathbf{p}}}$Most likely Time $=\mathbf{t}_{\mathbf{m}}$	
a	$1-2$	7	12	11
b	$1-3$	7	10	9
c	$2-4$	8	13	12
d	$3-4$	10	12	11
e	$3-5$	10	14	12
f	$4-5$	8	10	9

(B) Find critical path of the following project. Determine EFT, LFT and Float time for each activity :

Activity	$1-2$	$1-3$	$2-3$	$2-4$	$3-4$	$4-5$
Time	25	30	15	17	10	15

SECTION - II

5. Attempt any five :
(1) Total Float Time is equal to
(a) EFT - LFT
(b) EFT - EST
(c) LFT - EFT
(d) None of these
(2) In PERT diagram, Dummy activity is represented by \qquad
(a) Dotted arrow $(\cdots \cdots \longrightarrow)$
(b) Dotted line (......)
(c) Straight arrow (\longrightarrow)
(d) None of these
(3) For a 4×4 transportation problem having 4 origins s and 4 destinations, how many constraints can be formed ?
(a) 7
(b) 8
(c) 9
(d) None of these
(4) In transportation problem, we must make the number of \qquad and \qquad equal.
(a) columns, rows
(b) destinations, origins
(c) units supplied, units demanded
(d) None of these
(5) \qquad solution is obtained by Hungarian method of Assignment Problem.
(a) Basic
(b) Optimum
(c) Non negative
(d) None of these
(6) In assignment problem no. of rows and columns must be \qquad
(a) Unequal
(b) Unequal or equal
(c) Equal
(d) None of these
(7) During assignment problem, if there are two or more than two zeroes in all the rows and columns, \qquad is possible for given problem.
(a) Restricted solution
(b) Unique solution
(c) More than one solution
(d) None
(8) The best year for replacement is the one where \qquad is minimum.
(a) Total cost
(b) Maintenance cost
(c) Average total cost
(d) None of these
(9) The graph of $x \leq 6$ is a \qquad line and \qquad side of it.
(a) Horizontal, right
(b) Vertical, right
(c) Horizontal, left
(d) Vertical, left
(10) The inequalities for decision variables in a linear programming problem are called \qquad .
(a) Objective function
(b) Constraints
(c) Basic solution
(d) None of these
