Seat No. :

\qquad

JH-103

June-2022
B.Sc., Sem.-II

103 : Mathematics

(Differential Equations \& Co-ordinate Geometry)

Time : 2 Hours]
[Max. Marks : 50

સૂચનાઓ : (1) Section - Iના દરેક પ્રશ્નના ગુણ સમાન છે.
(2) Section - Iમાંથી કોઈૅપણ ત્રણ પ્રશ્નોના જવાબ લખવાના છે.
(3) Section - IIનો પ્રશ્ન નં. 9 ફરજીયાત છે.

SECTION - I

1. (A) બર્નોલીનું વિકલ સમીક૨ણ લખો અને તેના ઉકેલની ૨ીત સમજાવો.
(B) સમીકરણ ઉૈકેલો :
(i) $\quad(\sin y-\cos x) d x+(x \cos y+\sin y) d y=0$
(ii) $x \frac{d y}{d x}+y=x^{3} y^{4}$
2. (A) ક્લેરોટનું વિકલ સમીકરણ લખો તથા તેના ઉેકેલની ૨ીત વર્ણવોો. વધુમાં $\mathrm{p}^{2}-3 \mathrm{p}+2=0$ નો ઉકેલ પણ મેળવો, જ્યાં $\mathrm{p}=\frac{\mathrm{dy}}{\mathrm{d} x}$.
(B) સમીકરણ ઉેકેલો :
(i) $x \mathrm{yp}^{3}+\left(2 \mathrm{y}^{2}-3 x^{2}\right) \mathrm{p}^{2}-6 x y \mathrm{p}=0$; જ્યાં $\mathrm{p}=\frac{\mathrm{dy}}{\mathrm{d} x}$
(ii) $\mathrm{y}=2 \mathrm{p}+3 \mathrm{p}^{2}$; જ્યાi $\mathrm{p}=\frac{\mathrm{dy}}{\mathrm{d} x}$
3. (A) જો $\mathrm{f}\left(-\mathrm{a}^{2}\right) \neq 0$ હોય, તો સાબિત કરો કે : $\frac{1}{\mathrm{f}\left(\mathrm{D}^{2}\right)} \sin \mathrm{a} x=\frac{1}{\mathrm{f}\left(-\mathrm{a}^{2}\right)} \sin \mathrm{a} x$; જ્યાં $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{d} x}$.

વધુમાં $\frac{1}{\mathrm{D}^{3}+\mathrm{D}^{2}+\mathrm{D}+1} \sin 2 x$ નું સાદુ ३૫ આપો.
(B) સમીકરણ ઉકકેલો :
(i) $\quad\left(D^{4}-6 D^{3}+11 D^{2}-6 D\right) y=0$
(ii) $\left(\mathrm{D}^{2}-\mathrm{D}-6\right) \mathrm{y}=2 \mathrm{e}^{2 x}-5$
4. (A) જો $f(D+a) \neq 0$ હોય, તો સાબિત કરો કે : $\frac{1}{f(D)} e^{a x} V=e^{a x} \frac{1}{f(D+a)} V$; જ્યાં V-ચલ x નું વિધેય છે.
(B) સમીકરણ ઉૈકેલો :
(i) $\left(D^{2}+9\right) y=\sin 3 x$
(ii) $\left(x^{2} \mathrm{D}^{2}-x \mathrm{D}+1\right) \mathrm{y}=2 \log x$
5. (A) સમતલ $l x+m y+n z=p, p \neq 0$ ગોલક $x^{2}+y^{2}+z^{2}=a^{2}$ ને સ્પર્શે તે માટેની શરત તથા સ્પર્શબિંદુના યામ મેળવો.
(B) સાબિત કરો કे :

ગોલકો $x^{2}+y^{2}+z^{2}-6 x-4 y-10 z+2=0$ અને $x^{2}+y^{2}+z^{2}-2 x-2 y-6 z+2=0$ પ૨સ્પ૨ અંદ૨થી સ્પર્શે છે. સ્પર્શબિંદુના યામ પણ શોધો.
6. (A) R^{3} ના બે ભિન્ન ગોલકો લંબચ્છેદી હોવાની આવશ્યક અને પર્યાપ્ત શ૨ત મેળવો. જો બે ગોલકો $x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{k} x+4 \mathrm{y}+3=0$ અને $x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}+4 x+6 \mathrm{y}+\mathrm{kz}+5=0$ લંબચ્છેદી હોય, તો ‘ k ’ ની કિંમત શોધો.
(B) વર્તુળ $x^{2}+y^{2}+z^{2}-2 \mathrm{y}+2 \mathrm{z}-23=0 ; x+2 \mathrm{y}-2 \mathrm{z}+5=0$ નું કેન્દ્ર અને ત્રિજ્યા શોધો.
7. (A) પ્રચલિત સંકેતમાં શાંકવનું ધ્રુવીય સમીક૨ણ $\frac{1}{\mathrm{r}}=1+\mathrm{e} \cos \theta$ મેળવો.
(B) જો R^{3} માં બિંદુ Aના ગોલીય યામ $\left(2, \frac{\pi}{4}, \frac{\pi}{6}\right)$ હોય, તો તેના કાર્તેઝીય અને નળાકારીય યામ મેળવો.
8. (A) સાબિત કરો કે સમીકરણ $x^{2}+y^{2}+\mathrm{z}^{2}-16 x y-16 \mathrm{yz}+16 \mathrm{z} x=0$ સમશંકુ દર્શાવિ છે. તેનો અક્ષ અને અર્ધ શીર:કોણ મેળવો.
(B) Z - અક્ષને સમાંત૨ સર્જક રેખાવાળા નળાકારનો આધારવક્ક $x^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=8, x+2 \mathrm{y}+2 \mathrm{z}=6$ હોય, તો તે નળાકારનું સમીકરણ મેળવો.

SECTION - II

9. દૂકમાં જવાબ આપો (ગમે તે ચાર) :
(1) વિકલ સમીક૨ણ $\left[1+\left(\frac{\mathrm{dy}}{\mathrm{d} x}\right)^{3}\right]^{\frac{4}{3}}=\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{d} x^{3}}$ ની કક્ષા અને પરિમાણા લખો.
(2) વિકલ સમીક૨ણ $\mathrm{e}^{\mathrm{y}-x \mathrm{p}}=2 \mathrm{p}+\mathrm{p}^{2}$ નો સામાન્ય ઉકેલ મેળવો.
(3) સાદું ३૫ આપો: $\frac{1}{D^{2}-1} x^{3}$.
(4) R^{2} भiં $(1,-\sqrt{3})$ કારત્તુીય યામવાળા બિંદુના ધ્રુવીય યામ શોધો.
(5) ગોલક $x^{2}+y^{2}+z^{2}-2 x+2 y-2 z-6=0$ પ૨ના $(0,1,-1)$ બિંદુએ સ્પર્શતલનું સમીક૨ણ મેળવો.
(6) ઉઢદગમબિંદુ શિરેબિંદુ, Y - અક્ષ પોતે જ સમશંકુનો અક્ષ અને θ અર્ધ શીર્ષકોણવાળા સમશંકુનું સમીકરણ લખો.
\qquad

JH-103

June-2022

B.Sc., Sem.-II

103 : Mathematics

(Differential Equations \& Co-ordinate Geometry)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Each question in Section - I carry equal marks.
(2) Attempt any Three questions in Section - I.
(3) Question - $\mathbf{9}$ in Section - II is Compulsory.

SECTION - I

1. (A) Write Bernoulli's differential equation and explain the method of its solution.
(B) Solve the equations:
(i) $\quad(\sin y-\cos x) d x+(x \cos y+\sin y) d y=0$
(ii) $x \frac{\mathrm{dy}}{\mathrm{d} x}+\mathrm{y}=x^{3} \mathrm{y}^{4}$
2. (A) Write Clairout's differential equation and explain the method of its solution. Also solve $p^{2}-3 p+2=0$, where $p=\frac{d y}{d x}$.
(B) Solve the equations:
(i) $x \mathrm{yp}^{3}+\left(2 \mathrm{y}^{2}-3 x^{2}\right) \mathrm{p}^{2}-6 x y \mathrm{p}=0$; where $\mathrm{p}=\frac{\mathrm{dy}}{\mathrm{d} x}$
(ii) $\mathrm{y}=2 \mathrm{p}+3 \mathrm{p}^{2}$; where $\mathrm{p}=\frac{\mathrm{dy}}{\mathrm{d} x}$
3. (A) If $\mathrm{f}\left(-\mathrm{a}^{2}\right) \neq 0$ then prove that $\frac{1}{\mathrm{f}\left(\mathrm{D}^{2}\right)} \sin \mathrm{ax}=\frac{1}{\mathrm{f}\left(-\mathrm{a}^{2}\right)} \sin$ ax; where $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{d} x}$. Also simplify $\frac{1}{\mathrm{D}^{3}+\mathrm{D}^{2}+\mathrm{D}+1} \sin 2 x$.
(B) Solve the equations:
(i) $\quad\left(D^{4}-6 D^{3}+11 D^{2}-6 D\right) y=0$
(ii) $\left(\mathrm{D}^{2}-\mathrm{D}-6\right) \mathrm{y}=2 \mathrm{e}^{2 x}-5$
4. (A) If $f(D+a) \neq 0$ then prove that : $\frac{1}{f(D)} e^{a x} V=e^{a x} \frac{1}{f(D+a)} V$; where V is function of variable x.
(B) Solve the equations:
(i) $\left(D^{2}+9\right) y=\sin 3 x$
(ii) $\left(x^{2} \mathrm{D}^{2}-x \mathrm{D}+1\right) \mathrm{y}=2 \log x$
5. (A) Find the condition that the plane $l x+m y+n z=p, p \neq 0$ touches the sphere $x^{2}+y^{2}+z^{2}=a^{2}$. Also obtain the co-ordinates of the point of contact.
(B) Prove that the spheres $x^{2}+y^{2}+z^{2}-6 x-4 y-10 z+2=0$ and $x^{2}+y^{2}+z^{2}-2 x-2 y-6 z+2=0$ touch each other internally. Also obtain the co-ordinates of the point of contact.
6. (A) Obtain the necessary and sufficient condition for two different spheres in R^{3} are orthogonal. If two spheres $x^{2}+y^{2}+z^{2}-k x+4 y+3=0$ and $x^{2}+y^{2}+z^{2}+4 x+$ $6 y+k z+5=0$ are orthogonal then find value of ' k '.
(B) Find the centre and radius of the circle:

$$
x^{2}+y^{2}+z^{2}-2 y+2 z-23=0 ; x+2 y-2 z+5=0
$$

7. (A) In usual notation obtain the polar equation of a $\operatorname{conic} \frac{1}{r}=1+e \cos \theta$.
(B) If the spherical co-ordinates of point A are $\left(2, \frac{\pi}{4}, \frac{\pi}{6}\right)$ in R^{3}, find its Cartesian and Cylindrical co-ordinates.
8. (A) Prove that the equation $x^{2}+y^{2}+z^{2}-16 x y-16 y z+16 z x=0$ represents a right circular cone. Find its axis and semi-vertical angle.
(B) Find the equation of the cylinder whose generator line parallel to Z-axis and the guiding curve is $x^{2}+y^{2}+z^{2}=8 ; x+2 y+2 z=6$.

SECTION - II

9. Give the answer in short (Any Four) :
(1) Write the order and degree of the differential equation :

$$
\left[1+\left(\frac{\mathrm{dy}}{\mathrm{~d} x}\right)^{3}\right]^{\frac{4}{3}}=\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{~d} x^{3}}
$$

(2) Obtain the general solution of differential equation $e^{y-x p}=2 p+p^{2}$.
(3) Simplify : $\frac{1}{\mathrm{D}^{2}-1} x^{3}$.
(4) Find out the polar co-ordinates of the point having Cartesian co-ordinate $(1,-\sqrt{3})$ in R^{2}.
(5) Find the equation of tangent plane to the sphere

$$
x^{2}+y^{2}+z^{2}-2 x+2 y-2 z-6=0 \text { at point }(0,1,-1) \text { on it. }
$$

(6) Write an equation of a right circular cone, whose vertex is origin, axis is Y-axis and semi-vertical angle is θ.

