Seat No. : _____

JE-102

June-2022

M.Sc., Sem.-II

PHY-407 : Physics

(Quantum Mechanics – II and Mathematical Physics – II)

Time : 2 Hours]

[Max. Marks : 50

Instructions : (1) All questions in Section – I carry equal marks.

- (2) Attempt any **Three** questions in Section **I**.
- (3) Questions in Section II are COMPULSORY.

Section – I

JE-102		1 P.7	ſ .O .
	(B)	Discuss why \hat{a} and \hat{a}^+ are called the annihilation and creation operators, respectively.	7
3.	(A)	Discuss the creation and annihilation operators. Hence prove that $[\hat{a}, \hat{a}^+] = 1$.	7
	(B)	Discuss the interaction picture to prove that, the state vector in interaction picture can be determined by Schrodinger equation, while the operators obey the Heisenberg equation.	7
2.	(A)	Prove that the equations of motion for the expectation values in Heisenberg picture and Schrodinger picture are the same.	7
	(B)	Using the unitary operator \hat{U} in the Schrodinger picture, obtain an equation which is analogue of the Hamilton-Jacobi equation.	7
1.	(A)	What is the Schrodinger picture ? In the Schrodinger picture, prove that the evolution operator \hat{U} is unitary operator.	7

- 4. (A) Prove why the eigen states of the annihilation operator are called coherent states.
 (B) Discuss any three properties of the coherent states.
 7
- 5. (A) Derive first and second equations of Cauchy's Riemann conditions. 7
 - (B) Using Cauchy's Riemann conditions, find out given functions are analytic or non-analytic.

(1)
$$\cos hz = \frac{e^z - e^{-z}}{2}$$

(2)
$$f(Z) = \frac{z}{z^2 + 1}$$
; where $Z = x + iy$

6. (A) Prove the Residue theorem :

$$\oint_{C} f(Z) \, dZ = 2\pi i (R_1 + R_2 + \dots + R_n)$$

(B) (1) Show that
$$f(Z) = \frac{2z+3}{z+2}$$
; (where $Z = x + iy$) is non-analytic function. 4

(2) Show that
$$f(Z) = \sin z$$
; (where $Z = x + iy$) is an analytic function. 3

7

7

7

- 7. (A) Explain importance of Integral equations in Physics. Also describe various classifications of integral equations.
 - (B) Convert following differential equation into an integral equation.

$$y'' + y = 0$$
 with $y(0) = -1$ and $y'(0) = -1$. 7

- 8. (A) Describe method of conversion of second ordered differential equation into an integral equation.
- (B) Obtain Green's function for one dimensional problem. 7 JE-102 2

Section – II

- 1. The operator $\hat{a}^+ \hat{a}$ is also called _____ operator.
 - (A) ladder (B) number
 - (C) lowering (D) annihilation
- 2. The eigen value of â⁺ â is _____.
 (A) always positive (B) always zero
 (C) always negative (D) always infinite
- 3. In _____ picture the state vector Ψ is a function of time, but the dynamical variable \hat{A} is independent of time.
 - (A) Heisenberg (B) Schrodinger
 - (C) Perturbation (D) Interaction
- 4. The quantity $\langle \Psi | \hat{A} | \Psi \rangle$ represents
 - (A) Expectation value of \hat{A} for non-normalized wave function Ψ
 - (B) Eigen value of \hat{A} for normalized wave function Ψ
 - (C) Expectation value of \hat{A} for normalized wave function Ψ
 - (D) The norm of \hat{A}

5. If
$$f(Z) = (i-i^2)^3$$
 then $f(Z^*) =$

- (A) -2+2i (B) -2-2i
- (C) 2+2i (D) i-1

JE-102

P.T.O.

- 6. $R_e \sqrt{i} + I_m \sqrt{i} =$ (A) 0, 1 (B) 1, -1 (C) 0, $\sqrt{2}$ (D) 1, $\sqrt{2}$
- 7. While solving a partial differential equation using a variable separable method, we equate the ratio to a constant which.
 - (A) can be positive or negative integer or zero
 - (B) can be positive or negative rational number or zero
 - (C) must be a positive integer
 - (D) must be a negative integer
- 8. A Green's function is _____
 - (A) the impulse response of an inhomogeneous linear differential operator
 - (B) the impulse response of an homogeneous linear differential operator
 - (C) the impulse response of an inhomogeneous non-linear differential operator
 - (D) the impulse response of an homogeneous non-linear differential operator