Seat No. : _____

AR-104

April-2022

B.Com., Sem.-IV CE-203 (B) : Statistics (V)

(Advance Statistics)

Time : 2 Hours]

- સૂચનાઓ: (1) જમણી તરફના અંક જે તે પ્રશ્નના ગુણ દર્શાવે છે.
 - (2) સાદા કેલક્યુલેટરનો ઉપયોગ કરી શકાશે.
 - (3) વિભાગ Aમાંથી કોઇપણ બે પ્રશ્નના જવાબ આપો.
 - (4) વિભાગ **B** કરજિયાત છે.

વિભાગ – A

- (a) અસતત યાદચ્છિક ચલ માટે ગાણિતીય અપેક્ષા અને વિચરણ વ્યાખ્યાયિત કરો. ગાણિતીય અપેક્ષાના ગુણધર્મો લખો.
 - (b) નીચે આપેલ દ્વિચલ સંભાવના વિધેય માટે E(x), E(y), E(x + y), V(x) અને V(y) ની કિંમતો શોધો : 10

x∖y	1	2	3
1	0.20	0.08	0.20
2	0.10	0.06	0.10
3	0	0.06	0.20

- 2. (a) દ્વિપદી વિતરણનું સંભાવના ઘટત્વ વિધેય જણાવી, દ્વિપદી વિતરણનો મધ્યક અને વિચરણ મેળવો. 10
 - (b) નીચેની માહિતી માટે પોયશન વિતરણનું અન્વાયોજન કરો :

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x _i	0	1	2	3	4	5	6	7	8	9	10
	$\mathbf{f}_{\mathbf{i}}$	1	4	15	22	21	20	8	6	2	0	1

 $[e^{-4} = 0.0183]$

- (a) ૠણ દ્વિપદી વિતરણ અને ગુણોત્તર વિતરણનું સંભાવના ઘટત્વ વિધેય જણાવી, ગુણોત્તર વિતરણનો મધ્યક અને વિચરણ મેળવો.
 - (b) એક પેટીમાં 6 સફેદ અને 4 કાળા દડાઓ છે. તેમાંથી 5 દડાઓ યાદચ્છિક રીતે લેવામાં આવે તો તેમાં
 - (i) બધા જ કાળા દડાઓ
 - (ii) 3 સફેદ દડાઓ અને
 - (iii) 2 કાળા દડાઓ આવે તેની સંભાવના શોધો.

AR-104

1

10

[Max. Marks : 50

10

- 4. (a) પ્રામાણ્ય વિતરણનાં ગુણધર્મો અને ઉપયોગો જણાવો.
 - (b) કર્મચારીઓના એક સમૂહના વેતનનું વિતરણ પ્રામાણ્ય છે. વિતરણનો મધ્યક ₹ 12,000 અને પ્રમાણિત વિચલન ₹ 2,000 છે. 50 કર્મચારીઓને ₹ 16,000 કરતાં વધારે વેતન મળતું હોય તો કુલ કેટલા કર્મચારીઓ હશે ?

[પ્રમાણિત પ્રામાણ્ય વક્રના z = 0 થી z = 2 નું ક્ષેત્રફળ 0.4772 છે.]

વિભાગ – B

5.	યોગ્ય	થ વિકલ્પ પસંદ કરી નીચેના પ્રશ્નોના જવાબ આપો : (કોઇપણ પાંચ)										
	(1)	બે ચલો x અને y માટે, જો $E(x) = 8$, $E(y) = 9$, $V(x) = 36$, $V(y) = 15$ અને $E(xy) = 64$ હોય તો $V(2x - 5y)$ ની કિંમત શોધો.										
		(a)	- 3	(b)	147	(c)	-231	(d)	519			
	(2)	બે સ્વતંત્ર ચલો x અને y માટે, જો $E(x) = 20$, $E(y) = 25$, $V(x) = 40$, અને $V(y) = 45$ હોય તો $Cov(3x - 2y)$ અને $E(5x + 4y)$ ની કિંમત શોધો.										
		(a)	[0, 0]	(b)	[0, 200]	(c)	[130, 200]	(d)	[200, 900]			
	(3)	એક સંભાવ	જચ્થામાં 80% વના શોધો.	∕∂ કેરીવ	ઓ મીઠી છે. ચં	ોથી કે	રી તપાસતા પ્ર	યથમ વ	ાખત મીઠી કેરી મળવાની			
		(a)	0.0032	(b)	0.0064	(c)	0.00128	(d)	0			
	(4)	એક ઋણ દ્વિપદી વિતરણમાં મધ્યક અને વિચરણ અનુક્રમે 8 અને 24 હોય તો p ની કિંમત શોધો.										
		(a)	$\frac{1}{4}$	(b)	$\frac{2}{3}$	(c)	$\frac{1}{2}$	(d)	$\frac{1}{3}$			
	(5)	જો એ	ક પોયસન ચલ	સ x મોરે	$\partial P(x=0) = P$	(x = 1)) હોય તો m -	ી કિંમત	ત શોધો.			
		(a)	1	(b)	0	(c)	2	(d)	એકપણ નહિ			
	(6)	જો n	= 18 અને q =	$=\frac{1}{3}$ હોર	ય તો ક્રિપદી વિત	રણનો	મધ્યક અને વિ	ચરણ	શોધો.			
		(a)	[12, 4]	(b)	[12, 12]	(c)	[6, 4]	(d)	એકપણ નહિ			
	(7)	પ્રામા	ણ્ય વિતરણ મ	ાટે જો વ	સરેરાશ વિચલન	20 હોર	ય તો પ્રમાણિત	વિચલ	નની કિંમત શોધો.			
		(a)	15	(b)	20	(c)	25	(d)	એકપણ નહિ			
	(8)	પ્રામા	ણ્ય વિતરણ મ	ાટે જો ર	પ્રમાણિત વિચલ	ન 11.2	5 હોય તો ચત્	ર્શ્વક વિ	યલનની કિંમત શોધો.			
		(a)	5	(b)	25	(c)	7.5	(d)	એકપણ નહિ			

10

Seat No. : _____

AR-104

April-2022

B.Com., Sem.-IV CE-203 (B) : Statistics (V) (Advance Statistics)

Time : 2 Hours]

[Max. Marks : 50

- **Instructions :** (1) Figures on right show marks of the question.
 - (2) Simple calculator can be used.
 - (3) Attempt any **two** questions from Section \mathbf{A} .
 - (4) Section $-\mathbf{B}$ is compulsory.

Section – A

- 1. (a) Define Mathematical Expectation and Variance of a discrete random variable. Write the properties of mathematical expectation. 10
 - (b) For the following bivariate probability function, obtain the values of E(x), E(y), E(x + y), V(x) and V(y): 10

x∖y	1	2	3
1	0.20	0.08	0.20
2	0.10	0.06	0.10
3	0	0.06	0.20

- 2. (a) Write probability mass function of Binomial distribution and obtain its mean and variance of it. 10
 - (b) Fit a Poisson distribution to the following data :

x _i	0	1	2	3	4	5	6	7	8	9	10	
f_i	1	4	15	22	21	20	8	6	2	0	1	
										[e⁻	4 = ().0183]

- 3. (a) Write probability mass function of Negative Binomial distribution and Geometric distribution. Obtain mean and variance of Geometric distribution. 10
 - (b) In a bag, there are 6 white and 4 black balls. 5 balls are taken at random from it. Find the probability that
 - (i) all are black
 - (ii) 3 white and
 - (iii) 2 black balls in selected 5 balls.

3

10 P.T.O.

- Write the properties and uses of Normal distribution. 4. (a)
 - (b) The salary of group of workers is known to follow normal distribution with an average salary of ₹ 12,000 and standard deviation of salary as ₹ 2,000. If 50 workers receive salary more than \gtrless 16,000, then find the total no. of workers. Given area of the standard normal curve between z = 0 to z = 2 is 0.4772.

Section – B

5.	Answer the following by selecting an appropriate alternative: (Any five)										
	(1)	For t E(xy)	two variable $(= 64, then)$	es x a find the find the find the find the first second	nd y, if $E(x)$ ne value of V	= 8, (2x - 3)	E(y) = 9, 5y).	V(x)	= 36, V(y) = 15 and		
		(a)	- 3	(b)	147	(c)	-231	(d)	519		
	(2)	For t V(y)	wo indepen = 45, then f	dent v ind th	variables x an e values of Co	d y, i ov(3 <i>x</i>	f E(x) = 20, -2y and E	E(y) (5x +	= 25, V(x) = 40, and 4y).		
		(a)	[0, 0]	(b)	[0, 200]	(c)	[130, 200]	(d)	[200, 900]		
	(3)	80% of mangoes are sweet in a lot. Find the probability that the first sweet mango will be obtained when 4 th mango is tested.									
		(a)	0.0032	(b)	0.0064	(c)	0.00128	(d)	0		
	(4) In a negative binomial distribution, if mean and variance are respectively24, then find the value of p.										
		(a)	$\frac{1}{4}$	(b)	$\frac{2}{3}$	(c)	$\frac{1}{2}$	(d)	$\frac{1}{3}$		
	(5) For Poisson variable x, $P(x = 0) = P(x = 1)$ then find value of m.										
		(a)	1	(b)	0	(c)	2	(d)	None of these		
	(6)	5) For Binomial distribution if $n = 18$ and $q = \frac{1}{3}$, then find the values of its mean dynamics									
		(a)	[12 4]	(b)	[12 12]	(c)	[6 4]	(d)	None of these		
	(7)	(a) For a	normal dist	ributio	n if mean des	(c) viation	$\begin{bmatrix} 0, T \end{bmatrix}$ is 20 then f	ind its	standard deviation		
	(7)	(a)	15	(b)	20		25, uten 1	(d)	None of these		
	(8)	(a) For ((a) 15 (b) 20 (c) 25 (d) None of these $(1, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$								
	(0)	devia	a normar di ation.	sindu	lion, n standa	aru ue		1.23,	then find its quartie		
		(a)	5	(b)	25	(c)	7.5	(d)	None of these		

10

10