Seat No. :

AP-110

April-2022

B.Sc., Sem.-IV

CC-205 : Mathematics

(Abstract Algebra-I)

Time : 2 Hours] [Max. Marks : 50 આપેલ પ્રશ્ન 1 થી 8માંથી કોઇપણ ત્રણ લખવા. **સ્ચનાઓ :** (1) (2) પ્રશ્ન નં.-9 ફરજીયાત છે. (3) પ્રશ્નપત્રમાં આપેલ પ્રશ્ન ક્રમાંક તમારી ઉત્તરવહીમાં લખો. (4) જમણી તરફ આપેલ આંકડા પ્રશ્નના ગુણ દર્શાવે છે. ધારો કે ~ ગણ Aમાં આપેલ સામ્ય-સંબંધ છે. અને a ∈ A માટે cl (a), a નો સામ્ય-વર્ગ છે. 1. (a) a, b ∈ A માટે, સાબિત કરો કે (i) $a \sim b \Leftrightarrow cl(a) = cl(b)$ (ii) $cl(a) \neq cl(b) \Longrightarrow cl(a) \cap cl(b) = \phi$ 7 સમૂહનાં ઘટકની કક્ષા વ્યાખ્યાયિત કરો. તથા સમક્રમી સમૂહ Gમાં ઘટકો a તથા bની કક્ષા અનુક્રમે (b) m અને n છે. જો (m, n) = 1 હોય, તો સાબિત કરો કે ઘટક abની કક્ષા m-n છે. 7 સાબિત કરો કે શ્રેણિકોના ગુણાકારની દ્વિક ક્રિયા તળે ગણ 2. (a) $G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R}, \ a^2 + b^2 \neq 0 \right\} \text{ is any cll any black bound}.$ 7 ગણ ℤ પર નીચે પ્રમાણે વ્યાખ્યાયિત સંબંધ S એ સામ્ય સંબંધ છે. તેમ સાબિત કરો જો (b) n | (a - b) હોય, તો aSb થાય. જ્યાં $n \in \mathbb{N}$ નિશ્ચિત કરેલ છે a, b ∈ Z છે. 7 સાન્ત સમૂહ Gનાં ઉપસમૂહ H માટે લાંગ્રાજનું પ્રમેય લખો અને સાબિત કરો. 3. 7 (a) સાબિત કરો કે 7 (b) જો H એ સમૂહ Gનો ઉપસમૂહ હોય અને $x \in G$ હોય, તો x^{-1} H $x = \{x^{-1}$ h $x \mid h \in H\}$ (i) એ Gનો ઉપસમૂહ છે. (ii) સમૂહ Gનાં બે ઉપસમૂહોનો છેદગણ એ Gનો ઉપસમૂહ થાય. **AP-110** 1 **P.T.O.**

4.	(a) (b)	સાબિત કરો કે અવિભાજ્ય કક્ષા ધરાવતો સમૂહ એ ચક્રીય સમૂહ છે. સમહત્તો ઉપસમક ત્યાપ્રસાયિત કરો તથા સાબિત કરો કે આપેલ સમહતે તેના બે ઉચિત	7		
	(0)	લપુરુષા ઉપસંપૂર્ણ આગળાવતા કરા તેવા સાાગત કરા કે ગાયલ સંપૂર્ણ તેવા ગે ઉપસં ઉપસંપૂહોના યોગ તરીકે દર્શાવી શકાય નહીં.	7		
5.	(a)	જો H એ સમૂહ Gનો ઉપસમૂહ હોય, અને Gમાં H ના બે દક્ષિણ સહગણોનો ગુણાકાર પણ Gમાં H નો દક્ષિણ સહગણ ધરાવે તો H, G નો નિયત ઉપસમૂહ છે, તેમ સાબિત કરો.	7		
	(b)	જો k એ સમૂહ Gનો ઉપસમૂહ હોય, અને H એ સમૂહ Gનો નિયત ઉપસમૂહ છે. તો સાબિત કરો કે	7		
		 (i) k ∩ H એ Kનો નિયત ઉપસમૂહ થાય. (ii) kH એ Gનો ઉપસમૂહ થાય. 			
6.	(a)	યુગ્મ ક્રમચયની વ્યાખ્યા આપો અને સાબિત કરો કે યુગ્મ ક્રમચયોનો ગણ $\mathrm{A_n}$ એ સંમિત સમૂહ $\mathrm{S_n}$ નો ઉપસમૂહ છે.	7		
	(b)	સંમિત સમૂર્ S_6 નાં ઘટકો f, g જ્યાં	7		
		$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$ માટે fg ² અને o(g) મેળવો.			
7.	(a)	સાબિત કરો કે સમાન કક્ષા ધરાવતા કોઇપણ બે સાન્ત ચક્રીય સમૂહો એકરૂપ થાય.	7		
	(b)	જો G = < a > એ n કક્ષા ધરાવતો સાન્ત ચક્રીય સમૂહ હોય, તો સાબિત કરો કે 1 ≤ s < n માટે ઘટક a ^s ∈ G એ Gનો સર્જક હોય, તો અને તો જ (n, s) = 1.	7		
8.	(a)	સમરૂપતાનું મૂળભૂત પ્રમેય લખો અને સાબિત કરો.	7		
	(b)	સમૂહનાં નિયત ઉપસમૂહની વ્યાખ્યા આપો. અને જો φ : (G; 0) → (G'; ★) સમરૂપતા હોય, તો સાબિત કરો કે Gનાં નિયત ઉપસમૂહ H માટે φ(H), સમૂહ φ(G)નો નિયત ઉપસમૂહ છે.	7		
9.	ટૂંકમાં	ટૂંકમાં ઉત્તર આપો : (કોઇપણ ચાર) 8			
	(1)	જો સમૂહ Gની કક્ષા 5 હોય, તો Gનાં ઘટક aની કક્ષા શોધો. જ્યાં a ≠ e તથા કારણ આપો.			
	(2)	સમક્રમી સમૂહ Gનાં ઘટકો a અને b ની કક્ષાઓ અનુક્રમે 2 અને 7 હોય, તો ઘટક abની કક્ષા મેળવો. કારણ આપો.			
	(3)	નીચે આપેલ ક્રમચયો યુગ્મ છે કે અયુગ્મ તે ચકાસો :			
		(i) $f = (1 \ 2 \ 3) \ (4 \ 5) \ (6 \ 7 \ 8) \in S_8.$			
		(ii) $g = (1 \ 7 \ 3 \ 13) (2 \ 10 \ 9) (6 \ 12) (8 \ 15) \in S_{15}$.			
	(4)	આત્મરૂપતા વ્યાખ્યાચિત કરો અને કેઇલેનું પ્રમેય લખો.			
	(5)	સમૂહ ℤ ₅ માં સમીકરણ [2] + ₅ <i>x</i> = [3] ઉંકેલો.			
	(6)	સમૂહનાં સર્જકની વ્યાખ્યા આપો અને સમૂહ ($\mathbb{Z}_8, +_8)$ નાં બધા સર્જકો આપો.			

Seat No. : _____

AP-110

April-2022

B.Sc., Sem.-IV

CC-205 : Mathematics (Abstract Algebra-I)

Time : 2 Hours]

- **Instructions :** (1) Attempt any **three** questions from question 1 to 8.
 - (2) Question-9 is compulsory.
 - (3) Write the question number in your answer book as shown in the question paper.
 - (4) The figure to the right indicates marks of the question.
- 1. (a) Let ~ be an equivalence relation in set A and suppose cl (a) is the equivalence class for $a \in A$. Then for $a, b \in A$, prove that

(i)
$$a \sim b \Leftrightarrow cl(a) = cl(b)$$

(ii)
$$cl(a) \neq cl(b) \Longrightarrow cl(a) \cap cl(b) = \phi$$

(b) Define order of an element in a group. Let G is a commutative group and the elements a and b in G are of orders m and n respectively. If (m, n) = 1, then prove that order of ab is mn.

2. (a) Let
$$G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \text{ and } a^2 + b^2 \neq 0 \right\}$$
. Show that G is a commutative

group under matrix multiplication.

- (b) For fixed n ∈ N and a, b ∈ Z, Define relation S in Z as aSb if n divides (a b). Prove that S is an equivalence relation.
 7
- 3. (a) State and prove Lagrange's theorem for a subgroup H of a finite Group G. 7

(b) Prove that

- (i) x^{-1} Hx = { x^{-1} hx | h \in H} is a subgroup of a group G, if $x \in$ G and H is a subgroup of G.
- (ii) Intersection of any two subgroups of a group G is also a subgroup of G.

3

AP-110

[Max. Marks : 50

7

7

7

4.	(a)	Prove that a group of prime order is cyclic.	7
	(b)	Define subgroup of a group and prove that a group cannot be a union of its two proper subgroups.	7
5.	(a) (b)	If H is a subgroup of G and if product of two right cosets of H in G is again a right coset of H in G, then prove that H is a normal subgroup of G. If K is a subgroup of G and H is normal subgroup of G, then prove that (i) $K \cap H$ is a normal subgroup of K (ii) KH is a subgroup of G.	7 7
6.	(a)	Define even permutation and prove that set of all even permutations A_n is a subgroup of a symmetric group S_n .	7
	(b)	For the elements f, g of S ₆ , where $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 1 & 6 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$ Obtain fg ² and o(g).	7
7.	(a)	Prove that any two finite cyclic groups of same order are isomorphic.	7
	(b)	Let $G = \langle a \rangle$ be a finite cyclic group of order n. Prove that for $1 \leq s < n$, the element $a^s \in G$ is a generator of G if any only if $(n, s) = 1$.	7
8.	(a) (b)	State and prove first fundamental theorem of a group homomorphism. Define Normal subgroup of a group and if H is a normal subgroup of a group G and $\phi : (G; 0) \rightarrow (G'; \bigstar)$ is a group homomorphism, then prove that $\phi(H)$ is a	7
		and ψ . (G, ψ) \rightarrow (G, \star) is a group nonionorphism, then prove that $\psi(\Pi)$ is a normal subgroup of $\phi(G)$.	7
9.	Give	the answer in brief : (any four)	8
	(1)	If G is a group of order 5, then write $0(a)$, where $e \neq a \in G$ and justify.	
	(2)	In a commutative group G, the elements a and b are of orders 2 and 7 respectively, then what is the order of ab ? Justify	
	(3)	Examine whether the following permutations are even or odd :	
		(i) $f = (1 \ 2 \ 3) \ (4 \ 5) \ (6 \ 7 \ 8) \in S_8.$	
		(ii) $g = (1 \ 7 \ 3 \ 13) (2 \ 10 \ 9) (6 \ 12) (8 \ 15) \in S_{15}.$	
	(4)	Define automorphism and state the Cayley's theorem.	
	(5)	Solve the equation $[2] +_5 x = [3]$ in \mathbb{Z}_5 .	

(6) Define generator of a group and give all generators of a group $(\mathbb{Z}_8, +_8)$.