Seat No. : \qquad

AP-110

April-2022
B.Sc., Sem.-IV

CC-205 : Mathematics

(Abstract Algebra-I)
Time : 2 Hours]
[Max. Marks : 50
સૂચનાઓ : (1) આપેલ પ્રશ્ન 1 થી 8 માંથી કોઈપણ ત્રણ લખવા.
(2) પ્રશ્ન નં. - 9 ફરજીયાત છે.
(3) પ્રશ્નપત્રમાં આપેલ પ્રશ્ન ક્રમાંક તમારી ઉત્તરવહીમાં લખો.
(4) જમણી ત૨ફ આપેલ આંકડા પ્રશ્નના ગુણ દર્શાવે છે.

1. (a) ધારો કे ~ ગણ Aમાં આપેલ સામ્ય-સંબંધ છે. અને $\mathrm{a} \in \mathrm{A}$ માટે $\mathrm{cl}(\mathrm{a})$, a નો સામ્ય-વર્ગ છે. $a, b \in A$ માટે, સાબિત કરો કे
(i) $\mathrm{a} \sim \mathrm{b} \Leftrightarrow \mathrm{cl}$ (a) $=\mathrm{cl}$ (b)
(ii) $\quad \operatorname{cl}(\mathrm{a}) \neq \operatorname{cl}(\mathrm{b}) \Rightarrow \operatorname{cl}(\mathrm{a}) \cap \operatorname{cl}(\mathrm{b})=\phi$
(b) સમૂહનાં ઘટકની કક્ષા વ્યાખ્યાયિત કરો. તથા સમક્રમી સમૂહ Gમાં ઘટકો a તથા bની કક્ષા અનુક્રમે m અને n છે. જો $(\mathrm{m}, \mathrm{n})=1$ હોય, તો સાબિત કરો કે ઘટક ab ની કક્ષા m-n છે.
2. (a) સાબિત કરો કે શ્રેણિકોના ગુણાકાર્ની દ્વિક ક્રિયા તળે ગણ
$\mathrm{G}=\left\{\left.\left(\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ -\mathrm{b} & \mathrm{a}\end{array}\right) \right\rvert\, \mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a}^{2}+\mathrm{b}^{2} \neq 0\right\}$ એ સમજૂતી સમૂહ છે.
(b) ગણ \mathbb{Z} પ૨ નીચે પ્રમાણે વ્યાખ્યાયિત સંબંધ S એ સામ્ય સંબંધ છે. તેમ સાબિત કરો જો $n \mid(a-b)$ હોય, તો $a S b$ થાય. જ્યાં $n \in \mathbb{N}$ નિશ્ચિત કરેલ છે $a, b \in \mathbb{Z}$ છે.
3. (a) સાન્ત સમૂહ Gનાં ઉપપસમૂહ H માટે લાંગ્રાજનું પ્રમેય લખો અને સાબિત કરો.
(b) સાબિત કરો કे
(i) જો H એ સમૂહ Gનો ઉપસમૂહ હોય અને $x \in \mathrm{G}$ હોય, तो $x^{-1} \mathrm{H} x=\left\{x^{-1} \mathrm{~h} x \mid \mathrm{h} \in \mathrm{H}\right\}$ એ Gનો ઉપસમૂહ છે.
(ii) સમૂહ Gનાં બે ઉપસમૂહોનો છેદગણ એ Gનો ઉપસમૂહ થાય.
4. (a) સાબિત કરો કે અવિભાજ્ય કક્ષા ધરાવતો સમૂહ્ર એ ચક્રીય સમૂહ છે.
(b) સમૂહનો ઉપસમૂહ વ્યાખ્યાયિત કરો તથા સાબિત કરો કे આપેલ સમૂહને તેના બે ઉચિત ઉપપસમૂહોના યોગ તર્રીકે દર્શાવી શકાય નહીં.
5. (a) જો H એ સમૂહ Gનો ઉપસમૂહ હોય, અને Gમાં H ના બે દક્ષિણ સહગણોનો ગુણાકાર પણ Gમાં H નો દક્ષિણ સહગણ ધરાવે તો H, G નો નિયત ઉપસમૂહ છે, તેમ સાબિત કરો.
(b) જો k એ સમૂહ Gનો ઉપસમૂહ હોય, અને H એ સમૂહ Gનો નિયત ઉપસમૂહ છે. તો સાબિત કરો子े
(i) $\mathrm{k} \cap \mathrm{H}$ એ Kનો નિયત ઉપસમૂહ થાય.
(ii) kH એ Gનો ઉપસમૂહ થાય.
6. (a) યુગ્મ ક્રમચયની વ્યાખ્યા આપો અને સાબિત કરો કે યુગ્મ ક્રમચયોનો ગણ A_{n} એ સંમિત સમૂહ્હ S_{n} નો ઉપસમૂહ્રે.
(b) સંમિત સમૂહ S_{6} નાં ઘટકો f, g જ્યાં
$\mathrm{f}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 1 & 6\end{array}\right), \mathrm{g}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5\end{array}\right)$ માટે fg^{2} અને $\mathrm{o}(\mathrm{g})$ મેળવો.
7. (a) સાબિત કરો કે સમાન કક્ષા ધરાવતા કોઈપણ બે સાન્ત ચક્રીય સમૂહો એકરૂપ થાય.
(b) જો $\mathrm{G}=<\mathrm{a}>$ એ n કક્ષા ધરાવતો સાન્ત ચક્રીય સમૂહ હોય, તો સાબિત કરો કે $1 \leq \mathrm{s}<\mathrm{n}$ માટે ઘટક $\mathrm{a}^{\mathrm{s}} \in \mathrm{G}$ એ G નો સર્જક હોય, તો અને તો જ $(\mathrm{n}, \mathrm{s})=1$.
8. (a) સમરૂપતાનું મૂળભૂત પ્રમેય લખો અને સાબિત કરો.
(b) સમૂહનાં નિયત ઉિપસમૂહ્રી વ્યાખ્યા આપો. અને જો $\phi:(G ; 0) \rightarrow\left(\mathrm{G}^{\prime} ; \star\right)$ સમરૂપતા હોય, તો સાબિત કરો કે Gનાં નિયત ઉપસમૂહ H માટે $\phi(\mathrm{H})$, સમૂહ $\phi(\mathrm{G})$ નો નિયત ઉપપસૂૂ છે.
9. ટૂંકમાં ઉત્તર આપો : (કોઈપણ ચા૨)
(1) જો સમૂહ Gની કક્ષા 5 હોય, તો Gનાં ઘટક a ની કક્ષા શોધો. જ્યાં $\mathrm{a} \neq \mathrm{e}$ તથા કારણા આપો.
(2) સમક્રમી સમૂહ G નાં ઘટકો a અને b ની કક્ષાઓ અનુક્રમે 2 અને 7 હોય, તો ઘટક $a b ન ી ~ ક ક ્ ષ ા ~$ મેળવો. કારણ આપો.
(3) નીચે આપેલ ક્રમચયો યુગ્મ છે કે અયુગ્મ તે ચકાસો :
(i) $\mathrm{f}=\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(678) \in \mathrm{S}_{8}$.
(ii) $\mathrm{g}=\left(\begin{array}{lll}173 & 13\end{array}\right)\left(\begin{array}{lll}2 & 10 & 9\end{array}\right)\left(\begin{array}{ll}6 & 12\end{array}\right)(815) \in \mathrm{S}_{15}$.
(4) આત્મરૂપાા વ્યાખ્યાયિત કરો અને કેઈલેનું પ્રમેય લખો.
(5) સમૂહ \mathbb{Z}_{5} માં સમીક૨ણ [2] ${ }_{5} x=$ [3] ઉ૬કેલો.
(6) સમૂહનાં સર્જકની વ્યાખ્યા આપો અને સમૂહ $\left(\mathbb{Z}_{8},+_{8}\right)$ નાં બધા સર્જકો આપો.
\qquad

AP-110

April-2022

B.Sc., Sem.-IV

CC-205 : Mathematics
(Abstract Algebra-I)

Time : 2 Hours]
[Max. Marks : 50
Instructions : (1) Attempt any three questions from question 1 to 8.
(2) Question-9 is compulsory.
(3) Write the question number in your answer book as shown in the question paper.
(4) The figure to the right indicates marks of the question.

1. (a) Let \sim be an equivalence relation in set A and suppose $\mathrm{c} l(\mathrm{a})$ is the equivalence class for $\mathrm{a} \in \mathrm{A}$. Then for $\mathrm{a}, \mathrm{b} \in \mathrm{A}$, prove that
(i) $\quad \mathrm{a} \sim \mathrm{b} \Leftrightarrow \mathrm{cl}(\mathrm{a})=\mathrm{cl}$ (b)
(ii) $\quad c l(a) \neq c l(b) \Rightarrow c l(a) \cap c l(b)=\phi$
(b) Define order of an element in a group. Let G is a commutative group and the elements a and b in G are of orders m and n respectively. If $(m, n)=1$, then prove that order of ab is mn .
2. (a) Let $G=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in R\right.$ and $\left.a^{2}+b^{2} \neq 0\right\}$. Show that G is a commutative group under matrix multiplication.
(b) For fixed $\mathrm{n} \in \mathbb{N}$ and $\mathrm{a}, \mathrm{b} \in \mathbb{Z}$, Define relation S in \mathbb{Z} as aSb if n divides $(\mathrm{a}-\mathrm{b})$. Prove that S is an equivalence relation.
3. (a) State and prove Lagrange's theorem for a subgroup H of a finite Group G.
(b) Prove that
(i) $x^{-1} \mathrm{H} x=\left\{x^{-1} \mathrm{~h} x \mid \mathrm{h} \in \mathrm{H}\right\}$ is a subgroup of a group G , if $x \in \mathrm{G}$ and H is a subgroup of G.
(ii) Intersection of any two subgroups of a group G is also a subgroup of G.
4. (a) Prove that a group of prime order is cyclic.
(b) Define subgroup of a group and prove that a group cannot be a union of its two proper subgroups.
5. (a) If H is a subgroup of G and if product of two right cosets of H in G is again a right coset of H in G , then prove that H is a normal subgroup of G .
(b) If K is a subgroup of G and H is normal subgroup of G , then prove that
(i) $\mathrm{K} \cap \mathrm{H}$ is a normal subgroup of K
(ii) KH is a subgroup of G .
6. (a) Define even permutation and prove that set of all even permutations A_{n} is a subgroup of a symmetric group S_{n}.
(b) For the elements f, g of S_{6}, where
$f=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 1 & 6\end{array}\right), g=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5\end{array}\right)$
Obtain fg^{2} and $\mathrm{o}(\mathrm{g})$.
7. (a) Prove that any two finite cyclic groups of same order are isomorphic.
(b) Let $\mathrm{G}=<\mathrm{a}>$ be a finite cyclic group of order n . Prove that for $1 \leq \mathrm{s}<\mathrm{n}$, the element $a^{s} \in G$ is a generator of G if any only if $(n, s)=1$.
8. (a) State and prove first fundamental theorem of a group homomorphism.
(b) Define Normal subgroup of a group and if H is a normal subgroup of a group G and $\phi:(\mathrm{G} ; 0) \rightarrow\left(\mathrm{G}^{\prime} ; \star\right)$ is a group homomorphism, then prove that $\phi(\mathrm{H})$ is a normal subgroup of $\phi(\mathrm{G})$.
9. Give the answer in brief: (any four)
(1) If G is a group of order 5, then write $0(a)$, where $e \neq a \in G$ and justify.
(2) In a commutative group G, the elements a and b are of orders 2 and 7 respectively, then what is the order of ab ? Justify
(3) Examine whether the following permutations are even or odd:
(i) $\mathrm{f}=\left(\begin{array}{l}1 \\ 2\end{array} 3\right)(45)(678) \in \mathrm{S}_{8}$.
(ii) $g=\left(\begin{array}{lll}173 & 13\end{array}\right)\left(\begin{array}{lll}2 & 10 & 9\end{array}\right)\left(\begin{array}{ll}6 & 12\end{array}\right)\left(\begin{array}{ll}8 & 15\end{array}\right) \in \mathrm{S}_{15}$.
(4) Define automorphism and state the Cayley's theorem.
(5) Solve the equation $[2]+{ }_{5} x=[3]$ in \mathbb{Z}_{5}.
(6) Define generator of a group and give all generators of a group $\left(\mathbb{Z}_{8},+_{8}\right)$.
