Seat No. : \qquad

AO-116

April-2022
B.Sc., Sem.-IV

CC-204 : Mathematics

Advance Calculus-II (Theory)
Time : 2 Hours]
[Max. Marks : 50

સૂચનાઓ : (1) પ્રશ્નક્રમાંક 1 થી 8 માંથી ગમે તે ત્રણના જવાબ આપો.
(2) પ્રશ્ન-9 ફરજીયાત છે.
(3) ઉત્તરવહીમાં પ્રશ્નપત્રમાં દર્શાવ્યા પ્રમાણે પ્રશ્નનો અંક લખવો.
(4) જમણી બાજુના અંક જે તે પ્રશ્નના ગુણભાર દર્શાવે છે.
વિભાગ - I

1. (A) કિંમત શોધો : $\iint_{\mathrm{R}} x \mathrm{yd} x \mathrm{dy}$. જ્યાં $\mathrm{R}=\left\{(x, \mathrm{y}) / x \geq 0, \mathrm{y} \leq 4, x^{2} \leq \mathrm{y}\right\}$
(B) યામ સમતલો અને સમતલ $\frac{x}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{c}}=1$ વડે બંધ ઘનનું ઘનફળ શોધો.
2. (A) ત્રિપલ સંકલનની સમજ આપો. તેનો ઉપયયોગ કરી $\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\pi} y \sin z d x d y d z ન ુ ં ~ મ ૂ લ ્ ય ~ શ ો ધ ો . ~$
(B) સંકલન $\int_{0}^{3} \int_{\sqrt{9-y^{2}}}^{\mathrm{y}+6} \mathrm{f}(x, \mathrm{y}) \mathrm{d} x$ dyनो ક્રમ બદલો.
3. (A) પ્રચલિત સકેતોમાં સાબિત કરો કે $\beta(\mathrm{m}, \mathrm{n}+1)+\beta(\mathrm{m}+1, \mathrm{n})=\beta(\mathrm{m}, \mathrm{n})$
(B) સાબિત કરો કે $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$.
4. (A) જો $\overline{\mathrm{r}}=(x, \mathrm{y}, \mathrm{z})$ અને $\mathrm{r}=|\overline{\mathrm{r}}|$ હોય તો સાબિત કરો કે $\operatorname{div}(\phi(\mathrm{r}) \overline{\mathrm{r}})=3 \phi(\mathrm{r})+\mathrm{r} \phi^{\prime}(\mathrm{r})$.
(B) બીટા-ગામા વિધેયોનો ઉપયોગ કરી કિંમત શોધો.
(i) $\int_{0}^{\infty}\left(\frac{x}{1+x^{2}}\right)^{6} \mathrm{~d} x$
(ii) $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta$
5. (A) ગ્રીનનું પ્રમેય લખો અને સાબિત કરો.
(B) કિંમત शોધો. $\iint_{\mathrm{S}} \overline{\mathrm{f}} . \mathrm{n}$ ds જ્યયi $\overline{\mathrm{f}}=\left(x^{3}-\mathrm{yz},-2 x^{2} \mathrm{y}, \mathrm{z}\right)$ अને S એ $x=0, \mathrm{y}=0, \mathrm{z}=0$, $x=\mathrm{a}, \mathrm{y}=\mathrm{a}, \mathrm{z}=\mathrm{a}$ थી ઘેરાયેલ ચોરસ પેટીનું પૃષ્ઠ છે.
6. (A) સ્ટોક્સનું ં્રમેય લખો અને સાબિત કરો.
(B) โિંમત શોધો : $\oint\left(x^{2}+\mathrm{y}\right) \mathrm{d} x+\left(2 x+\mathrm{y}^{2}\right)$ dy જ્યાં C ઐ $(1,1),(1,2),(2,2)$ અને $(2,1)$ શિરેબિંદુઓ વાળો ચોરસ છે.
7. (A) વિકલ સમીકશણ $(\mathrm{y}+\mathrm{z}) \mathrm{p}+(\mathrm{z}+x) \mathrm{q}=x+\mathrm{y}$ નો વ્યાપક Є૬કલ મેળવો.
(B) આંશિક વિકલ સમીક૨ણ $x^{2} \mathrm{p}+\mathrm{y}^{2} \mathrm{q}=\left(x^{2}-\mathrm{y}^{2}\right) \mathrm{z}$ નો ઉ૬કલ મેળવો.
8. (A) સાબિત કરો કે પરિભમણીય પૃષ્ઠ $\mathrm{z}=\mathrm{f}(\mathrm{r})$ નું આંશિક વિકલ સમીક૨ણ $\mathrm{yp}-x \mathrm{q}=0$ છે. જ્યાં, $\mathrm{r}=\sqrt{x^{2}+y^{2}}$
(B) શરતો $\mathrm{z}(x, 0)=x^{2}$ અને $\mathrm{z}(1, \mathrm{y})=\sin \mathrm{y}$ ને આધીન $\frac{\partial^{2} \mathrm{z}}{\partial x \partial \mathrm{y}}=x^{2} \mathrm{y}$ Єેકો.

વિભાગ-II
9. દૂકમાં જવાબ આપો : (ગમે તે ચા૨)
(1) โिंभત शोधો. $\int_{0}^{2} \int_{0}^{x} 1 d y d x$.
(2) સાબિત કરો કे $\beta(m, n)=\beta(n, m)$.
(3) સાબિત કરો ક $\int_{0}^{1} \sqrt{x} \sqrt[3]{\left(1-x^{2}\right) \mathrm{d} x}=\frac{1}{2} \beta\left(\frac{3}{4}, \frac{4}{3}\right)$.
(4) જो $x=\mathrm{r} \cos \theta, \mathrm{y}=\mathrm{r} \sin \theta$ तो $\frac{\partial(x, \mathrm{y})}{\partial(\mathrm{r}, \theta)}$ शोधो.
(5) સાબિત કરો કે div (curlF) $=0$ જ્ય્યા $\mathrm{F}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right)$.
(6) પ્રચલિત સકેતોમાં સાબિત કરો કે $\operatorname{curl}(\operatorname{grad} \phi)=0$.

Seat No. : \qquad

AO-116

April-2022

B.Sc., Sem.-IV
 CC-204 : Mathematics
 Advance Calculus-II (Theory)

Time : 2 Hours]
[Max. Marks : 50

Instructions : (1) Attempt any three questions from question $\mathbf{1}$ to 8 .
(2) Question 9 is compulsory.
(3) Write the question number in your answer book as shown in the question paper.
(4) The figures to the right indicate marks of the questions.

Section - I

1. (A) Evaluate : $\iint_{\mathrm{R}} x \mathrm{yd} x \mathrm{dy}$. Where $\mathrm{R}=\left\{(x, \mathrm{y}) / x \geq 0, \mathrm{y} \leq 4, x^{2} \leq \mathrm{y}\right\}$
(B) Find the volume of solid bounded by the co-ordinate planes and the plane $\frac{x}{a}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{c}}=1$.
2. (A) Define : Triple integration and use it to evaluate $\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\pi} y \sin z d x d y d z$.
(B) Change the order of integration $\int_{0}^{3} \int_{\sqrt{9-y^{2}}}^{\mathrm{y}+6} \mathrm{f}(x, y) \mathrm{d} x d y$.
3. (A) In usual notation, prove that $\beta(m, n+1)+\beta(m+1, n)=\beta(m, n)$.
(B) Prove that $\nabla^{2} \mathrm{f}(\mathrm{r})=\mathrm{f}^{\prime \prime}(\mathrm{r})+\frac{2}{\mathrm{r}} \mathrm{f}^{\prime}(\mathrm{r})$.
4. (A) If $\overline{\mathrm{r}}=(x, \mathrm{y}, \mathrm{z})$ and $\mathrm{r}=|\overline{\mathrm{r}}|$ then prove that $\operatorname{div}(\phi(\mathrm{r}) \overline{\mathrm{r}})=3 \phi(\mathrm{r})+\mathrm{r} \phi^{\prime}(\mathrm{r})$
(B) Evaluate using Beta-gamma function
(i) $\int_{0}^{\infty}\left(\frac{x}{1+x^{2}}\right)^{6} d x$
(ii) $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta$
5. (A) State and prove Green's theorem.
(B) Evaluate $\iint_{\mathrm{S}} \overline{\mathrm{f}}$.n ds, where $\overline{\mathrm{f}}=\left(x^{3}-y z,-2 x^{2} y, z\right)$ and S is the surface of Cube with faces $x=0, \mathrm{y}=0, \mathrm{z}=0, x=\mathrm{a}, \mathrm{y}=\mathrm{a}, \mathrm{z}=\mathrm{a}$.
6. (A) State and prove Stoke's theorem.
(B) Evaluate : $\oint\left(x^{2}+y\right) \mathrm{d} x+\left(2 x+\mathrm{y}^{2}\right) \mathrm{dy}$. Where C is the square having vertices $(1,1),(1,2),(2,2)$ and $(2,1)$.
7. (A) Obtain the general solution of differential equation $(\mathrm{y}+\mathrm{z}) \mathrm{p}+(\mathrm{z}+x) \mathrm{q}=x+\mathrm{y}$.
(B) Solve the Partial differential equation $x^{2} p+y^{2} q=\left(x^{2}-y^{2}\right) z$.
8. (A) Prove that the Partial differential equation of the surface of revolution $z=f(r)$ is $y p-x q=0$ where $r=\sqrt{x^{2}+y^{2}}$.
(B) Solve $\frac{\partial^{2} \mathrm{z}}{\partial x \partial \mathrm{y}}=x^{2} \mathrm{y}$, subject to condition $\mathrm{z}(x, 0)=x^{2}$ and $\mathrm{z}(1, \mathrm{y})=\sin \mathrm{y}$.

Section - II

9. Give the answer in brief : (Any four)
(1) Evaluate $\int_{0}^{2} \int_{0}^{x} 1 \mathrm{dyd} x$.
(2) Prove that $\beta(m, n)=\beta(n, m)$.
(3) Prove that $\int_{0}^{1} \sqrt{x} \sqrt[3]{\left(1-x^{2}\right) \mathrm{d} x}=\frac{1}{2} \beta\left(\frac{3}{4}, \frac{4}{3}\right)$.
(4) If $x=r \cos \theta, y=r \sin \theta$, then find $\frac{\partial(x, y)}{\partial(r, \theta)}$
(5) Prove that div $(\operatorname{curlF})=0$, where $F=\left(f_{1}, f_{2}, f_{3}\right)$.
(6) In usual notation prove that curl $(\operatorname{grad} \phi)=0$.
